LISTSERV mailing list manager LISTSERV 16.5

Help for HPS-SVN Archives


HPS-SVN Archives

HPS-SVN Archives


HPS-SVN@LISTSERV.SLAC.STANFORD.EDU


View:

Message:

[

First

|

Previous

|

Next

|

Last

]

By Topic:

[

First

|

Previous

|

Next

|

Last

]

By Author:

[

First

|

Previous

|

Next

|

Last

]

Font:

Proportional Font

LISTSERV Archives

LISTSERV Archives

HPS-SVN Home

HPS-SVN Home

HPS-SVN  May 2016

HPS-SVN May 2016

Subject:

r4366 - /java/sandbox/EcalRawConverterNoTimeCorrection.java

From:

[log in to unmask]

Reply-To:

Notification of commits to the hps svn repository <[log in to unmask]>

Date:

Sat, 21 May 2016 22:34:25 -0000

Content-Type:

text/plain

Parts/Attachments:

Parts/Attachments

text/plain (785 lines)

Author: [log in to unmask]
Date: Sat May 21 15:34:24 2016
New Revision: 4366

Log:
Same as EcalRawConverter, but no time corrections (shifts and offsets are excluded)

Modified:
    java/sandbox/EcalRawConverterNoTimeCorrection.java

Modified: java/sandbox/EcalRawConverterNoTimeCorrection.java
 =============================================================================
--- java/sandbox/EcalRawConverterNoTimeCorrection.java	(original)
+++ java/sandbox/EcalRawConverterNoTimeCorrection.java	Sat May 21 15:34:24 2016
@@ -0,0 +1,769 @@
+package org.hps.recon.ecal;
+
+import hep.aida.IFitResult;
+
+import java.awt.event.ActionEvent;
+import java.awt.event.ActionListener;
+import java.util.ArrayList;
+import java.util.Map;
+
+import org.hps.conditions.database.DatabaseConditionsManager;
+import org.hps.conditions.ecal.EcalChannel;
+import org.hps.conditions.ecal.EcalChannelConstants;
+import org.hps.conditions.ecal.EcalConditions;
+import org.hps.record.daqconfig.ConfigurationManager;
+import org.hps.record.daqconfig.FADCConfig;
+import org.lcsim.event.CalorimeterHit;
+import org.lcsim.event.EventHeader;
+import org.lcsim.event.GenericObject;
+import org.lcsim.event.RawCalorimeterHit;
+import org.lcsim.event.RawTrackerHit;
+import org.lcsim.event.base.BaseRawCalorimeterHit;
+import org.lcsim.geometry.Detector;
+
+/**
+ * This class is used to convert between
+ * {@link org.lcsim.event.RawCalorimeterHit} or
+ * {@link org.lcsim.event.RawTrackerHit}, objects with ADC/sample information,
+ * and {@link org.lcsim.event.CalorimeterHit}, an object with energy+time
+ * information. At minimum this involves pedestal subtraction/addition and gain
+ * scaling. Knows how to deal with Mode-1/3/7 FADC readout formats. Can perform
+ * Mode-3/7 firmware algorithms on Mode-1 data. Can alternatively call
+ * pulse-fitting on Mode-1 data.
+ * 
+ * All time walk/time offset corrections are performed to this collection after gains
+ * in EcalTimeCorrectionDriver
+ *
+ * @author Sho Uemura <[log in to unmask]>
+ * @author Andrea Celentano <[log in to unmask]>
+ * @author Nathan Baltzell <[log in to unmask]>
+ * @author Holly Szumila <[log in to unmask]>
+ */
+public class EcalRawConverterNoTimeCorrection {
+
+    /**
+     * If true, time walk correction is performed.
+     */
+    private boolean useTimeWalkCorrection = true;
+
+    /**
+     * If true, running pedestal is used.
+     */
+    private boolean useRunningPedestal = true;
+
+    /**
+     * If true, use a single gain factor for all channels. Else, use 442 gains
+     * from the conditions system.
+     */
+    private boolean constantGain = false;
+
+    /**
+     * A single gain factor for all channels (only used if constantGain=true)
+     */
+    private double gain;
+
+    /**
+     * If true, the relationship between ADC and GeV is a convention that
+     * includes readoutPeriod and a global scaling factor. If false, it is the
+     * currently used convention: E(GeV) = GAIN * ADC
+     */
+    private boolean use2014Gain = false;
+
+    /**
+     * If true, use the DAQ configuration from EVIO to set EcalRawConverter
+     * parameters. This should be removed to a standalone EcalRawConverter
+     * solely for trigger emulation.
+     */
+    private boolean useDAQConfig = false;
+
+    /**
+     * The DAQ configuration from EVIO used to set EcalRawConverter parameters
+     * if useDAQConfig=true. This should be removed to a standalone
+     * EcalRawConverter solely for trigger emulation.
+     */
+    private FADCConfig config = null;
+
+    /**
+     * Whether to use pulse fitting (EcalPulseFitter) to extract pulse energy
+     * time. Only applicable to Mode-1 data.
+     */
+    private boolean useFit = true;
+
+    /**
+     * The pulse fitter class.
+     */
+    private EcalPulseFitter pulseFitter = new EcalPulseFitter();
+
+    /**
+     * The time for one FADC sample (units = ns).
+     */
+    private static final int nsPerSample = 4;
+
+    /**
+     * The leading-edge threshold, relative to pedestal, for pulse-finding and
+     * time determination. Units = ADC. Used to convert mode-1 readout into
+     * mode-3/7 used by clustering. The default value of 12 is what we used for
+     * most of the 2014 run.
+     */
+    private double leadingEdgeThreshold = 12;
+
+    /**
+     * Integration range after (NSA) and before (NSB) threshold crossing.
+     * Units=ns, same as the DAQ configuration files. These must be multiples of
+     * 4 ns. Used for pulse integration in Mode-1, and pedestal subtraction in
+     * all modes. The default values of 20/100 are what we had during the entire
+     * 2014 run.
+     */
+    private int NSB = 20;
+    private int NSA = 100;
+
+    /**
+     * The number of samples in the FADC readout window. Needed in order to
+     * properly pedestal-correct clipped pulses for Mode-3/7. Ignored for mode-1
+     * input, since it already knows its number of samples. A non-positive
+     * number disables pulse-clipped pedestals and reverts to the old behavior
+     * which assumed integration range was constant.
+     */
+    private int windowSamples = -1;
+
+    /**
+     * The maximum number of peaks to be searched for. This is applicable only
+     * to Mode-1 data.
+     */
+    private int nPeak = 3;
+
+    /**
+     * Perform Mode-7 algorithm, else Mode-3. Only applicable to Mode-1 data.
+     */
+    private boolean mode7 = true;
+
+    private EcalConditions ecalConditions = null;
+
+    /**
+     * Currently sets up a listener for DAQ configuration from EVIO. This should
+     * be removed to a standalone ECalRawConverter solely for trigger emulation.
+     */
+    public EcalRawConverter() {
+        // Track changes in the DAQ configuration.
+        ConfigurationManager.addActionListener(new ActionListener() {
+
+            @Override
+            public void actionPerformed(ActionEvent e) {
+                // If the DAQ configuration should be used, load the
+                // relevant settings into the driver.
+                if (useDAQConfig) {
+                    // Get the FADC configuration.
+                    config = ConfigurationManager.getInstance().getFADCConfig();
+
+                    // Load the settings.
+                    NSB = config.getNSB();
+                    NSA = config.getNSA();
+                    windowSamples = config.getWindowWidth() / 4;
+
+                    // Get the number of peaks.
+                    if (config.getMode() == 1) {
+                        nPeak = Integer.MAX_VALUE;
+                    } else {
+                        nPeak = config.getMaxPulses();
+                    }
+
+                    // Print the FADC configuration.
+                    System.out.println();
+                    System.out.println();
+                    System.out.printf("NSA            :: %d ns%n", NSA);
+                    System.out.printf("NSB            :: %d ns%n", NSB);
+                    System.out.printf("Window Samples :: %d clock-cycles%n",
+                            windowSamples);
+                    System.out.printf("Max Peaks      :: %d peaks%n", nPeak);
+                    System.out
+                            .println("======================================================================");
+                    System.out
+                            .println("=== FADC Pulse-Processing Settings ===================================");
+                    System.out
+                            .println("======================================================================");
+                    config.printConfig(System.out);
+                }
+            }
+        });
+    }
+
+    public void setUseFit(boolean useFit) {
+        this.useFit = useFit;
+    }
+
+    public void setFixShapeParameter(boolean fix) {
+        pulseFitter.fixShapeParameter = fix;
+    }
+
+    public void setGlobalFixedPulseWidth(double width) {
+        pulseFitter.globalThreePoleWidth = width;
+        pulseFitter.fixShapeParameter = true;
+    }
+
+    /**
+     * Pulses with threshold crossing earlier than this will not be fit.
+     */
+    public void setFitThresholdTimeLo(int sample) {
+        pulseFitter.threshRange[0] = sample;
+    }
+
+    /**
+     * Pulses with threshold crossing time greater than this will not be fit.
+     */
+    public void setFitThresholdTimeHi(int sample) {
+        pulseFitter.threshRange[1] = sample;
+    }
+
+    /**
+     * Tell Minuit to limit pulse time parameter in fit to be greater than this.
+     */
+    public void setFitLimitTimeLo(int sample) {
+        pulseFitter.t0limits[0] = sample;
+    }
+
+    /**
+     * Tell Minuit to limit pulse time parameter in fit to be less than this.
+     */
+    public void setFitLimitTimeHi(int sample) {
+        pulseFitter.t0limits[1] = sample;
+    }
+
+    /**
+     * Set threshold for pulse finding. Units = ADC
+     */
+    public void setLeadingEdgeThreshold(double thresh) {
+        leadingEdgeThreshold = thresh;
+    }
+
+    /**
+     * Set number of samples after threshold crossing for pulse integration
+     * range.
+     */
+    public void setNSA(int nsa) {
+        if (NSA % nsPerSample != 0 || NSA < 0) {
+            throw new RuntimeException(
+                    "NSA must be multiples of 4ns and non-negative.");
+        }
+        NSA = nsa;
+    }
+
+    /**
+     * Set number of samples before threshold crossing for pulse integration
+     * range.
+     */
+    public void setNSB(int nsb) {
+        if (NSB % nsPerSample != 0 || NSB < 0) {
+            throw new RuntimeException(
+                    "NSB must be multiples of 4ns and non-negative.");
+        }
+        NSB = nsb;
+    }
+
+    /**
+     * Set number of samples in readout window. Used for pedestal subtraction
+     * for clipped pulses. This is ignored for Mode-1 raw data, since Mode-1
+     * knows its number of samples.
+     */
+    public void setWindowSamples(int windowSamples) {
+        this.windowSamples = windowSamples;
+    }
+
+    /**
+     * Set maximum number of pulses to search for in Mode-1 data.
+     */
+    public void setNPeak(int nPeak) {
+        if (nPeak < 1 || nPeak > 3) {
+            throw new RuntimeException("Npeak must be 1, 2, or 3.");
+        }
+        this.nPeak = nPeak;
+    }
+
+    /**
+     * Set Mode-7 emulation on/off. If off, falls back to Mode-3.
+     */
+    public void setMode7(boolean mode7) {
+        this.mode7 = mode7;
+    }
+
+    /**
+     * Set global gain value and turn on constant gain. The 442 gains from the
+     * conditions system will be ignored.
+     */
+    public void setGain(double gain) {
+        constantGain = true;
+        this.gain = gain;
+    }
+
+    /**
+     * Chooses which ADC --> Energy convention is used. If true, the
+     * relationship between ADC and GeV is a convention that includes
+     * readoutPeriod and a global scaling factor. If false, it is the currently
+     * used convention: E(GeV) = GAIN * ADC
+     */
+    public void setUse2014Gain(boolean use2014Gain) {
+        this.use2014Gain = use2014Gain;
+    }
+
+    /**
+     * Enables using running pedestals calculated on the fly from previous
+     * events. If false, uses 442 fixed pedestals from the conditions system.
+     * Only applies to FADC Mode-1/7 input data formats.
+     */
+    public void setUseRunningPedestal(boolean useRunningPedestal) {
+        this.useRunningPedestal = useRunningPedestal;
+    }
+
+    /**
+     * Set whether to use timewalk corrections.
+     */
+    public void setUseTimeWalkCorrection(boolean useTimeWalkCorrection) {
+        this.useTimeWalkCorrection = useTimeWalkCorrection;
+    }
+
+    /**
+     * Set whether to use DAQ configuration read from EVIO to set
+     * EcalRawConverter parameters. This should be removed to a standalone
+     * EcalRawCongverterDriver solely for trigger emulation.
+     */
+    public void setUseDAQConfig(boolean state) {
+        useDAQConfig = state;
+    }
+
+    /**
+     * Integrate the entire window. Return pedestal-subtracted integral.
+     */
+    public int sumADC(RawTrackerHit hit) {
+        EcalChannelConstants channelData = findChannel(hit.getCellID());
+        double pedestal;
+        if (useDAQConfig) {
+            // EcalChannel channel =
+            // ecalConditions.getChannelCollection().findGeometric(hit.getCellID());
+            pedestal = config.getPedestal(hit.getCellID());
+        } else {
+            pedestal = channelData.getCalibration().getPedestal();
+        }
+
+        int sum = 0;
+        short samples[] = hit.getADCValues();
+        for (int isample = 0; isample < samples.length; ++isample) {
+            sum += (samples[isample] - pedestal);
+        }
+        return sum;
+    }
+
+    /**
+     * This should probably be deprecated. HitDtoA(EventHeader,RawTrackerHit)
+     * has the same functionality if NSA+NSB > windowSamples, with the exception
+     * that that one also finds pulse time instead of this one's always
+     * reporting zero.
+     */
+    public CalorimeterHit HitDtoA(RawTrackerHit hit) {
+        double time = hit.getTime();
+        long id = hit.getCellID();
+        double rawEnergy = adcToEnergy(sumADC(hit), id);
+        return CalorimeterHitUtilities.create(rawEnergy, time, id);
+    }
+
+    /**
+     * Get pedestal for a single ADC sample. Choose whether to use static
+     * pedestal from database or running pedestal from mode-7.
+     */
+    public double getSingleSamplePedestal(EventHeader event, long cellID) {
+        if (useDAQConfig) {
+            // EcalChannel channel =
+            // ecalConditions.getChannelCollection().findGeometric(cellID);
+            return config.getPedestal(cellID);
+        }
+        if (useRunningPedestal && event != null) {
+            if (event.hasItem("EcalRunningPedestals")) {
+                Map<EcalChannel, Double> runningPedMap = (Map<EcalChannel, Double>) event
+                        .get("EcalRunningPedestals");
+                EcalChannel chan = ecalConditions.getChannelCollection()
+                        .findGeometric(cellID);
+                if (!runningPedMap.containsKey(chan)) {
+                    System.err.println("************** Missing Pedestal");
+                } else {
+                    return runningPedMap.get(chan);
+                }
+            } else {
+                System.err
+                        .println("*****************************************************************");
+                System.err
+                        .println("**  You Requested a Running Pedestal, but it is NOT available. **");
+                System.err
+                        .println("**     Reverting to the database. Only printing this ONCE.     **");
+                System.err
+                        .println("*****************************************************************");
+                useRunningPedestal = false;
+            }
+        }
+        return findChannel(cellID).getCalibration().getPedestal();
+    }
+
+    /**
+     * Get pedestal for entire pulse integral. Account for clipping if
+     * windowSamples is greater than zero.
+     */
+    public double getPulsePedestal(EventHeader event, long cellID,
+            int windowSamples, int thresholdCrossing) {
+        int firstSample, lastSample;
+        if (windowSamples > 0 && (NSA + NSB) / nsPerSample >= windowSamples) {
+            // special case where firmware always integrates entire window
+            firstSample = 0;
+            lastSample = windowSamples - 1;
+        } else {
+            firstSample = thresholdCrossing - NSB / nsPerSample;
+            lastSample = thresholdCrossing + NSA / nsPerSample - 1;
+            if (windowSamples > 0) {
+                // properly pedestal subtract pulses clipped by edge(s) of
+                // readout window:
+                if (firstSample < 0)
+                    firstSample = 0;
+                if (lastSample >= windowSamples)
+                    lastSample = windowSamples - 1;
+            }
+        }
+        return (lastSample - firstSample + 1)
+                * getSingleSamplePedestal(event, cellID);
+    }
+
+    /**
+     * Emulate the FADC250 firmware in conversion of Mode-1 waveform to a
+     * Mode-3/7 pulse, given a time for threshold crossing.
+     */
+    public double[] convertWaveformToPulse(RawTrackerHit hit,
+            int thresholdCrossing, boolean mode7) {
+
+        double fitQuality = -1;
+
+        short samples[] = hit.getADCValues();
+        // System.out.println("NewEvent");
+        // choose integration range:
+        int firstSample, lastSample;
+        if ((NSA + NSB) / nsPerSample >= samples.length) {
+            // firmware treats this case specially:
+            firstSample = 0;
+            lastSample = samples.length - 1;
+        } else {
+            firstSample = thresholdCrossing - NSB / nsPerSample;
+            lastSample = thresholdCrossing + NSA / nsPerSample - 1;
+        }
+
+        // mode-7's minimum/pedestal (average of first 4 samples):
+        double minADC = 0;
+        for (int jj = 0; jj < 4; jj++)
+            minADC += samples[jj];
+        // does the firmware's conversion of min to int occur before or after
+        // time calculation? undocumented.
+        // minADC=(int)(minADC/4);
+        minADC = (minADC / 4);
+
+        // System.out.println("Avg pedestal:\t"+minADC);
+
+        // mode-7's max pulse height:
+        double maxADC = 0;
+        // int sampleMaxADC=0;
+
+        // mode-3/7's pulse integral:
+        double sumADC = 0;
+
+        for (int jj = firstSample; jj <= lastSample; jj++) {
+
+            if (jj < 0)
+                continue;
+            if (jj >= samples.length)
+                break;
+
+            // integrate pulse:
+            sumADC += samples[jj];
+        }
+
+        // find pulse maximum:
+        // if (jj>firstSample && jj<samples.length-5) { // The "5" here is a
+        // firmware constant.
+        for (int jj = thresholdCrossing; jj < samples.length - 5; jj++) { // The
+                                                                          // "5"
+                                                                          // here
+                                                                          // is
+                                                                          // a
+                                                                          // firmware
+                                                                          // constant.
+            if (samples[jj + 1] < samples[jj]) {
+                // sampleMaxADC=jj;
+                maxADC = samples[jj];
+                break;
+            }
+        }
+
+        // pulse time with 4ns resolution:
+        double pulseTime = thresholdCrossing * nsPerSample;
+
+        // calculate Mode-7 high-resolution time:
+        if (mode7) {
+            if (thresholdCrossing < 4) {
+                // special case where firmware sets max to zero and time to 4ns
+                // time.
+                maxADC = 0;
+            } else if (maxADC > 0) {
+                // linear interpolation between threshold crossing and
+                // pulse maximum to find time at pulse half-height:
+
+                final double halfMax = (maxADC + minADC) / 2;
+                int t0 = -1;
+                for (int ii = thresholdCrossing - 1; ii < lastSample; ii++) {
+                    if (ii >= samples.length - 1)
+                        break;
+                    if (samples[ii] <= halfMax && samples[ii + 1] > halfMax) {
+                        t0 = ii;
+                        break;
+                    }
+                }
+                if (t0 > 0) {
+                    final int t1 = t0 + 1;
+                    final int a0 = samples[t0];
+                    final int a1 = samples[t1];
+                    // final double slope = (a1 - a0); // units = ADC/sample
+                    // final double yint = a1 - slope * t1; // units = ADC
+                    pulseTime = ((halfMax - a0) / (a1 - a0) + t0) * nsPerSample;
+                }
+            }
+        }
+
+        if (useFit) {
+            IFitResult fitResult = pulseFitter.fitPulse(hit, thresholdCrossing,
+                    maxADC);
+            if (fitResult != null) {
+                fitQuality = fitResult.quality();
+                if (fitQuality > 0) {
+                    pulseTime = fitResult.fittedParameter("time0")
+                            * nsPerSample;
+                    sumADC = fitResult.fittedParameter("integral");
+                    minADC = fitResult.fittedParameter("pedestal");
+                    maxADC = ((Ecal3PoleFunction) fitResult.fittedFunction())
+                            .maximum();
+                }
+            }
+        }
+
+        return new double[] { pulseTime, sumADC, minADC, maxADC, fitQuality };
+    }
+
+    /**
+     * This HitDtoA is for emulating the conversion of Mode-1 readout
+     * (RawTrackerHit) into what EcalRawConverter would have created from a
+     * Mode-3 or Mode-7 readout. Clustering classes will read the resulting
+     * CalorimeterHits same as if they were directly readout from the FADCs in
+     * Mode-3/7. For Mode-3, hit time is just the time of threshold crossing,
+     * with an optional time-walk correction. For Mode-7, it is a
+     * "high-resolution" one calculated by linear interpolation between
+     * threshold crossing and pulse maximum. TODO: Generate GenericObject (and
+     * corresponding LCRelation) to store min and max to fully emulate mode-7.
+     * This is less important for now.
+     */
+    public ArrayList<CalorimeterHit> HitDtoA(EventHeader event,
+            RawTrackerHit hit) {
+        final long cellID = hit.getCellID();
+        final short samples[] = hit.getADCValues();
+        if (samples.length == 0)
+            return null;
+
+        // threshold is pedestal plus threshold configuration parameter:
+        final int absoluteThreshold;
+        if (useDAQConfig) {
+            // EcalChannel channel =
+            // ecalConditions.getChannelCollection().findGeometric(hit.getCellID());
+            // int leadingEdgeThreshold =
+            // ConfigurationManager.getInstance().getFADCConfig().getThreshold(channel.getChannelId());
+            int leadingEdgeThreshold = config.getThreshold(cellID);
+            absoluteThreshold = (int) (getSingleSamplePedestal(event, cellID) + leadingEdgeThreshold);
+        } else {
+            absoluteThreshold = (int) (getSingleSamplePedestal(event, cellID) + leadingEdgeThreshold);
+        }
+
+        ArrayList<Integer> thresholdCrossings = new ArrayList<Integer>();
+
+        // special case, first sample is above threshold:
+        if (samples[0] > absoluteThreshold) {
+            thresholdCrossings.add(0);
+        }
+
+        // search for threshold crossings:
+        for (int ii = 1; ii < samples.length; ++ii) {
+            if (samples[ii] > absoluteThreshold
+                    && samples[ii - 1] <= absoluteThreshold) {
+
+                // found one:
+                thresholdCrossings.add(ii);
+
+                // search for next threshold crossing begins at end of this
+                // pulse:
+                if (useDAQConfig
+                        && ConfigurationManager.getInstance().getFADCConfig()
+                                .getMode() == 1) {
+                    // special case, emulating SSP:
+                    ii += 8;
+                } else {
+                    // "normal" case, emulating FADC250:
+                    ii += NSA / nsPerSample - 1;
+                }
+
+                // firmware limit on # of peaks:
+                if (thresholdCrossings.size() >= nPeak)
+                    break;
+            }
+        }
+
+        // make hits
+        ArrayList<CalorimeterHit> newHits = new ArrayList<CalorimeterHit>();
+        for (int thresholdCrossing : thresholdCrossings) {
+            // do pulse integral:
+            final double[] data = convertWaveformToPulse(hit,
+                    thresholdCrossing, mode7);
+            double time = data[0];
+            double sum = data[1];
+            // final double min = data[2]; // TODO: stick min and max in a
+            // GenericObject with an
+            // final double max = data[3]; // LCRelation to finish mode-7
+            // emulation
+            final double fitQuality = data[4];
+
+            if (!useFit || fitQuality <= 0) {
+                // do pedestal subtraction:
+                sum -= getPulsePedestal(event, cellID, samples.length,
+                        thresholdCrossing);
+            }
+
+            // do gain scaling:
+            double energy = adcToEnergy(sum, cellID);
+
+            newHits.add(CalorimeterHitUtilities.create(energy, time, cellID));
+        }
+
+        return newHits;
+    }
+
+    /**
+     * This HitDtoA is for Mode-3 data. A time-walk correction can be applied.
+     */
+    public CalorimeterHit HitDtoA(EventHeader event, RawCalorimeterHit hit,
+            double timeOffset) {
+        if (hit.getTimeStamp() % 64 != 0) {
+            System.out.println("unexpected timestamp " + hit.getTimeStamp());
+        }
+        double time = hit.getTimeStamp() / 16.0;
+        long id = hit.getCellID();
+        double pedestal = getPulsePedestal(event, id, windowSamples, (int) time
+                / nsPerSample);
+        double adcSum = hit.getAmplitude() - pedestal;
+        double rawEnergy = adcToEnergy(adcSum, id);
+        
+        return CalorimeterHitUtilities.create(rawEnergy, time + timeOffset, id);
+    }
+
+    /**
+     * This HitDtoA is exclusively for Mode-7 data, hence the GenericObject
+     * parameter.
+     */
+    public CalorimeterHit HitDtoA(EventHeader event, RawCalorimeterHit hit,
+            GenericObject mode7Data, double timeOffset) {
+        double time = hit.getTimeStamp() / 16.0; // timestamps use the full 62.5
+                                                 // ps resolution
+        long id = hit.getCellID();
+        double pedestal = getPulsePedestal(event, id, windowSamples, (int) time
+                / nsPerSample);
+        double adcSum = hit.getAmplitude() - pedestal;
+        double rawEnergy = adcToEnergy(adcSum, id);
+        return CalorimeterHitUtilities.create(rawEnergy, time + timeOffset, id);
+    }
+
+    /**
+     * This converts a corrected pulse integral (pedestal-subtracted and
+     * gain-scaled) back into raw pulse integral with units ADC.
+     */
+    public RawCalorimeterHit HitAtoD(CalorimeterHit hit) {
+        int time = (int) (Math.round(hit.getTime() / 4.0) * 64.0);
+        long id = hit.getCellID();
+        // Get the channel data.
+        EcalChannelConstants channelData = findChannel(id);
+        int amplitude;
+        double pedestal = getPulsePedestal(null, id, windowSamples,
+                (int) hit.getTime() / nsPerSample);
+        if (constantGain) {
+            amplitude = (int) Math.round((hit.getRawEnergy() / EcalUtils.MeV)
+                    / gain + pedestal);
+        } else {
+            amplitude = (int) Math.round((hit.getRawEnergy() / EcalUtils.MeV)
+                    / channelData.getGain().getGain() + pedestal);
+        }
+        time += findChannel(id).getTimeShift().getTimeShift();
+        RawCalorimeterHit h = new BaseRawCalorimeterHit(id, amplitude, time);
+        return h;
+    }
+
+    /**
+     * return energy (units of GeV) corresponding to the ADC sum and crystal ID
+     */
+    private double adcToEnergy(double adcSum, long cellID) {
+
+        // Get the channel data.
+        EcalChannelConstants channelData = findChannel(cellID);
+
+        if (useDAQConfig) {
+            // float gain =
+            // ConfigurationManager.getInstance().getFADCConfig().getGain(ecalConditions.getChannelCollection().findGeometric(cellID));
+            return config.getGain(cellID) * adcSum * EcalUtils.MeV;
+        } else if (use2014Gain) {
+            if (constantGain) {
+                return adcSum * EcalUtils.gainFactor
+                        * EcalUtils.ecalReadoutPeriod;
+            } else {
+                return channelData.getGain().getGain() * adcSum
+                        * EcalUtils.gainFactor * EcalUtils.ecalReadoutPeriod; // should
+                                                                              // not
+                                                                              // be
+                                                                              // used
+                                                                              // for
+                                                                              // the
+                                                                              // moment
+                                                                              // (2014/02)
+            }
+        } else {
+            if (constantGain) {
+                return gain * adcSum * EcalUtils.MeV;
+            } else {
+                return channelData.getGain().getGain() * adcSum * EcalUtils.MeV; // gain
+                                                                                 // is
+                                                                                 // defined
+                                                                                 // as
+                                                                                 // MeV/integrated
+                                                                                 // ADC
+            }
+        }
+    }
+
+    /**
+     * Must be set when an object EcalRawConverter is created.
+     *
+     * @param detector
+     *            (long)
+     */
+    public void setDetector(Detector detector) {
+        // ECAL combined conditions object.
+        ecalConditions = DatabaseConditionsManager.getInstance()
+                .getEcalConditions();
+        pulseFitter.setDetector(detector);
+    }
+
+    /**
+     * Convert physical ID to gain value.
+     *
+     * @param cellID
+     *            (long)
+     * @return channel constants (EcalChannelConstants)
+     */
+    public EcalChannelConstants findChannel(long cellID) {
+        return ecalConditions.getChannelConstants(ecalConditions
+                .getChannelCollection().findGeometric(cellID));
+    }
+
+}

Top of Message | Previous Page | Permalink

Advanced Options


Options

Log In

Log In

Get Password

Get Password


Search Archives

Search Archives


Subscribe or Unsubscribe

Subscribe or Unsubscribe


Archives

November 2017
August 2017
July 2017
January 2017
December 2016
November 2016
October 2016
September 2016
August 2016
July 2016
June 2016
May 2016
April 2016
March 2016
February 2016
January 2016
December 2015
November 2015
October 2015
September 2015
August 2015
July 2015
June 2015
May 2015
April 2015
March 2015
February 2015
January 2015
December 2014
November 2014
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013

ATOM RSS1 RSS2



LISTSERV.SLAC.STANFORD.EDU

Secured by F-Secure Anti-Virus CataList Email List Search Powered by the LISTSERV Email List Manager

Privacy Notice, Security Notice and Terms of Use