LISTSERV mailing list manager LISTSERV 16.5

Help for HPS-SVN Archives


HPS-SVN Archives

HPS-SVN Archives


HPS-SVN@LISTSERV.SLAC.STANFORD.EDU


View:

Message:

[

First

|

Previous

|

Next

|

Last

]

By Topic:

[

First

|

Previous

|

Next

|

Last

]

By Author:

[

First

|

Previous

|

Next

|

Last

]

Font:

Proportional Font

LISTSERV Archives

LISTSERV Archives

HPS-SVN Home

HPS-SVN Home

HPS-SVN  October 2016

HPS-SVN October 2016

Subject:

r4523 - in /java/branches/converter-div/ecal-recon/src/main/java/org/hps/recon/ecal: EcalRawConverter.java EcalRawConverterDriver.java

From:

[log in to unmask]

Reply-To:

Notification of commits to the hps svn repository <[log in to unmask]>

Date:

Fri, 21 Oct 2016 19:23:22 -0000

Content-Type:

text/plain

Parts/Attachments:

Parts/Attachments

text/plain (1691 lines)

Author: [log in to unmask]
Date: Fri Oct 21 12:23:19 2016
New Revision: 4523

Log: (empty)

Modified:
    java/branches/converter-div/ecal-recon/src/main/java/org/hps/recon/ecal/EcalRawConverter.java   (contents, props changed)
    java/branches/converter-div/ecal-recon/src/main/java/org/hps/recon/ecal/EcalRawConverterDriver.java   (contents, props changed)

Modified: java/branches/converter-div/ecal-recon/src/main/java/org/hps/recon/ecal/EcalRawConverter.java
 =============================================================================
--- java/branches/converter-div/ecal-recon/src/main/java/org/hps/recon/ecal/EcalRawConverter.java	(original)
+++ java/branches/converter-div/ecal-recon/src/main/java/org/hps/recon/ecal/EcalRawConverter.java	Fri Oct 21 12:23:19 2016
@@ -22,162 +22,117 @@
 import org.lcsim.geometry.Detector;
 
 /**
- * This class is used to convert between {@link org.lcsim.event.RawCalorimeterHit}
- * or {@link org.lcsim.event.RawTrackerHit}, objects with ADC/sample information,
- * and {@link org.lcsim.event.CalorimeterHit}, an object with energy+time information.
- * 
- * At minimum this involves pedestal subtraction/addition and gain scaling.
- *
- * Knows how to deal with Mode-1/3/7 FADC readout formats.
- * Can perform Mode-3/7 firmware algorithms on Mode-1 data.
- * Can alternatively call pulse-fitting on Mode-1 data.
- *
+ * This class is used to convert between {@link org.lcsim.event.RawCalorimeterHit} or
+ * {@link org.lcsim.event.RawTrackerHit}, objects with ADC/sample information, and
+ * {@link org.lcsim.event.CalorimeterHit}, an object with energy+time information. At minimum this involves pedestal
+ * subtraction/addition and gain scaling. Knows how to deal with Mode-1/3/7 FADC readout formats. Can perform Mode-3/7
+ * firmware algorithms on Mode-1 data. Can alternatively call pulse-fitting on Mode-1 data. All time walk/time offset
+ * corrections are performed to this collection after gains in EcalTimeCorrectionDriver
  *
  * @author Sho Uemura <[log in to unmask]>
  * @author Andrea Celentano <[log in to unmask]>
  * @author Nathan Baltzell <[log in to unmask]>
  * @author Holly Szumila <[log in to unmask]>
- *
  */
 public class EcalRawConverter {
 
-    /**
-     * If true, time walk correction is performed. 
-     */
-    private boolean useTimeWalkCorrection = true;
+
+    /**
+     * If true, running pedestal is used.
+     */
+    private boolean useRunningPedestal = true;
+
     
-    /**
-     * If true, running pedestal is used.
-     */
-    private boolean useRunningPedestal = true;
-    
-    /**
-     * If true, use a single gain factor for all channels.
-     * Else, use 442 gains from the conditions system. 
-     */
-    private boolean constantGain = false;
-    
-    /**
-     * A single gain factor for all channels (only used if constantGain=true)
-     */
-    private double gain;
-    
-    /**
-     * If true, the relationship between ADC and GeV is a convention that
-     * includes readoutPeriod and a global scaling factor.
-     * 
-     * If false, it is the currently used convention:  E(GeV) = GAIN * ADC 
-     */
-    private boolean use2014Gain = false;
-    
-    /**
-     * If true, use the DAQ configuration from EVIO to set EcalRawConverter parameters.
-     * This should be removed to a standalone EcalRawConverter solely for trigger emulation.
+
+    /**
+     * If true, use the DAQ configuration from EVIO to set EcalRawConverter parameters. This should be removed to a
+     * standalone EcalRawConverter solely for trigger emulation.
      */
     private boolean useDAQConfig = false;
-    
-    /**
-     * The DAQ configuration from EVIO used to set EcalRawConverter parameters
-     * if useDAQConfig=true.  This should be removed to a standalone EcalRawConverter
-     * solely for trigger emulation.
+
+    /**
+     * The DAQ configuration from EVIO used to set EcalRawConverter parameters if useDAQConfig=true. This should be
+     * removed to a standalone EcalRawConverter solely for trigger emulation.
      */
     private FADCConfig config = null;
-    
-    /**
-     * Whether to use pulse fitting (EcalPulseFitter) to extract pulse energy time.
-     * Only applicable to Mode-1 data.
+
+    /**
+     * Whether to use pulse fitting (EcalPulseFitter) to extract pulse energy time. Only applicable to Mode-1 data.
      */
     private boolean useFit = true;
-    
+
     /**
      * The pulse fitter class.
      */
     private EcalPulseFitter pulseFitter = new EcalPulseFitter();
-    /**
-     * activates a display of all the fits in AIDA.  
-     * @param display
-     */
-    public void setDisplay(boolean display){
-        pulseFitter.setDebug(display);
-    }
-    
+
     /**
      * The time for one FADC sample (units = ns).
      */
     private static final int nsPerSample = 4;
-    
-    /**
-     * The leading-edge threshold, relative to pedestal, for pulse-finding and
-     * time determination.  Units = ADC.  Used to convert mode-1 readout into
-     * mode-3/7 used by clustering.
-     * 
-     * The default value of 12 is what we used for most of the 2014 run.
+
+    /**
+     * The leading-edge threshold, relative to pedestal, for pulse-finding and time determination. Units = ADC. Used to
+     * convert mode-1 readout into mode-3/7 used by clustering. The default value of 12 is what we used for most of the
+     * 2014 run.
      */
     private double leadingEdgeThreshold = 12;
-    
-    /**
-     * Integration range after (NSA) and before (NSB) threshold crossing.  Units=ns,
-     * same as the DAQ configuration files.  These must be multiples of 4 ns.  Used
-     * for pulse integration in Mode-1, and pedestal subtraction in all modes.
-     * 
-     * The default values of 20/100 are what we had during the entire 2014 run.
+
+    /**
+     * Integration range after (NSA) and before (NSB) threshold crossing. Units=ns, same as the DAQ configuration files.
+     * These must be multiples of 4 ns. Used for pulse integration in Mode-1, and pedestal subtraction in all modes. The
+     * default values of 20/100 are what we had during the entire 2014 run.
      */
     private int NSB = 20;
     private int NSA = 100;
-  
-    /**
-     * The number of samples in the FADC readout window.  Needed in order to
-     * properly pedestal-correct clipped pulses for Mode-3/7.  Ignored for
-     * mode-1 input, since it already knows its number of samples.
-     * 
-     * A non-positive number disables pulse-clipped pedestals and reverts to
-     * the old behavior which assumed integration range was constant.
+
+    /**
+     * The number of samples in the FADC readout window. Needed in order to properly pedestal-correct clipped pulses for
+     * Mode-3/7. Ignored for mode-1 input, since it already knows its number of samples. A non-positive number disables
+     * pulse-clipped pedestals and reverts to the old behavior which assumed integration range was constant.
      */
     private int windowSamples = -1;
-    
-    /**
-     * The maximum number of peaks to be searched for.
-     * This is applicable only to Mode-1 data.
+
+    /**
+     * The maximum number of peaks to be searched for. This is applicable only to Mode-1 data.
      */
     private int nPeak = 3;
-   
-    /**
-     * Perform Mode-7 algorithm, else Mode-3.
-     * Only applicable to Mode-1 data.
+
+    /**
+     * Perform Mode-7 algorithm, else Mode-3. Only applicable to Mode-1 data.
      */
     private boolean mode7 = true;
 
-
     private EcalConditions ecalConditions = null;
 
     /**
-     * Currently sets up a listener for DAQ configuration from EVIO.
-     * This should be removed to a standalone ECalRawConverter solely
-     * for trigger emulation.
+     * Currently sets up a listener for DAQ configuration from EVIO. This should be removed to a standalone
+     * ECalRawConverter solely for trigger emulation.
      */
     public EcalRawConverter() {
         // Track changes in the DAQ configuration.
         ConfigurationManager.addActionListener(new ActionListener() {
+
             @Override
             public void actionPerformed(ActionEvent e) {
                 // If the DAQ configuration should be used, load the
                 // relevant settings into the driver.
-                if(useDAQConfig) {
+                if (useDAQConfig) {
                     // Get the FADC configuration.
                     config = ConfigurationManager.getInstance().getFADCConfig();
-                    
+
                     // Load the settings.
                     NSB = config.getNSB();
                     NSA = config.getNSA();
                     windowSamples = config.getWindowWidth() / 4;
-                    
+
                     // Get the number of peaks.
-                    if(config.getMode() == 1) {
+                    if (config.getMode() == 1) {
                         nPeak = Integer.MAX_VALUE;
                     } else {
                         nPeak = config.getMaxPulses();
                     }
-                    
+
                     // Print the FADC configuration.
                     System.out.println();
                     System.out.println();
@@ -193,185 +148,140 @@
             }
         });
     }
-    
+
+    public void setUseFit(boolean useFit) {
+        this.useFit = useFit;
+    }
+
+    public void setFixShapeParameter(boolean fix) {
+        pulseFitter.fixShapeParameter = fix;
+    }
+
+    public void setGlobalFixedPulseWidth(double width) {
+        pulseFitter.globalThreePoleWidth = width;
+        pulseFitter.fixShapeParameter = true;
+    }
+
+    /**
+     * Pulses with threshold crossing earlier than this will not be fit.
+     */
+    public void setFitThresholdTimeLo(int sample) {
+        pulseFitter.threshRange[0] = sample;
+    }
+
+    /**
+     * Pulses with threshold crossing time greater than this will not be fit.
+     */
+    public void setFitThresholdTimeHi(int sample) {
+        pulseFitter.threshRange[1] = sample;
+    }
+
+    /**
+     * Tell Minuit to limit pulse time parameter in fit to be greater than this.
+     */
+    public void setFitLimitTimeLo(int sample) {
+        pulseFitter.t0limits[0] = sample;
+    }
+
+    /**
+     * Tell Minuit to limit pulse time parameter in fit to be less than this.
+     */
+    public void setFitLimitTimeHi(int sample) {
+        pulseFitter.t0limits[1] = sample;
+    }
+
+    /**
+     * Set threshold for pulse finding. Units = ADC
+     */
+    public void setLeadingEdgeThreshold(double thresh) {
+        leadingEdgeThreshold = thresh;
+    }
+
+    /**
+     * Set number of samples after threshold crossing for pulse integration range.
+     */
+    public void setNSA(int nsa) {
+        if (NSA % nsPerSample != 0 || NSA < 0) {
+            throw new RuntimeException("NSA must be multiples of 4ns and non-negative.");
+        }
+        NSA = nsa;
+    }
+
+    /**
+     * Set number of samples before threshold crossing for pulse integration range.
+     */
+    public void setNSB(int nsb) {
+        if (NSB % nsPerSample != 0 || NSB < 0) {
+            throw new RuntimeException("NSB must be multiples of 4ns and non-negative.");
+        }
+        NSB = nsb;
+    }
+
+    /**
+     * Set number of samples in readout window. Used for pedestal subtraction for clipped pulses. This is ignored for
+     * Mode-1 raw data, since Mode-1 knows its number of samples.
+     */
+    public void setWindowSamples(int windowSamples) {
+        this.windowSamples = windowSamples;
+    }
+
+    /**
+     * Set maximum number of pulses to search for in Mode-1 data.
+     */
+    public void setNPeak(int nPeak) {
+        if (nPeak < 1 || nPeak > 3) {
+            throw new RuntimeException("Npeak must be 1, 2, or 3.");
+        }
+        this.nPeak = nPeak;
+    }
+
+    /**
+     * Set Mode-7 emulation on/off. If off, falls back to Mode-3.
+     */
+    public void setMode7(boolean mode7) {
+        this.mode7 = mode7;
+    }
+
  
-    public void setUseFit(boolean useFit) { this.useFit=useFit; }
-    public void setFixShapeParameter(boolean fix) { pulseFitter.fixShapeParameter=fix; }
-    public void setGlobalFixedPulseWidth(double width) { 
-        pulseFitter.globalThreePoleWidth=width; 
-        pulseFitter.fixShapeParameter=true;
-    }
-    
-    /**
-     * Pulses with threshold crossing earlier than this will not be fit.
-     */
-    public void setFitThresholdTimeLo(int sample) { pulseFitter.threshRange[0]=sample; }
-    /**
-     * Pulses with threshold crossing time greater than this will not be fit.
-     */
-    public void setFitThresholdTimeHi(int sample) { pulseFitter.threshRange[1]=sample; }
-    /**
-     * Tell Minuit to limit pulse time parameter in fit to be greater than this. 
-     */
-    public void setFitLimitTimeLo(int sample) { pulseFitter.t0limits[0]=sample; }
-    /**
-     * Tell Minuit to limit pulse time parameter in fit to be less than this. 
-     */
-    public void setFitLimitTimeHi(int sample) { pulseFitter.t0limits[1]=sample; }
-    
-    
-
-    /**
-     * Set threshold for pulse finding.  Units = ADC
-     */
-    public void setLeadingEdgeThreshold(double thresh) {
-        leadingEdgeThreshold=thresh;
-    }
-    
-    /**
-     * Set number of samples after threshold crossing for pulse integration range.
-     */
-    public void setNSA(int nsa) {
-        if (NSA%nsPerSample !=0 || NSA<0) {
-            throw new RuntimeException("NSA must be multiples of 4ns and non-negative.");
-        }
-        NSA=nsa;
-    }
-    
-    /**
-     * Set number of samples before threshold crossing for pulse integration range.
-     */
-    public void setNSB(int nsb) {
-        if (NSB%nsPerSample !=0 || NSB<0) {
-            throw new RuntimeException("NSB must be multiples of 4ns and non-negative.");
-        }
-        NSB=nsb;
-    }
+
+    /**
+     * Enables using running pedestals calculated on the fly from previous events. If false, uses 442 fixed pedestals
+     * from the conditions system. Only applies to FADC Mode-1/7 input data formats.
+     */
+    public void setUseRunningPedestal(boolean useRunningPedestal) {
+        this.useRunningPedestal = useRunningPedestal;
+    }
+
    
-    /**
-     * Set number of samples in readout window.  
-     * 
-     * Used for pedestal subtraction for clipped pulses.
-     * This is ignored for Mode-1 raw data, since Mode-1 knows its number of samples. 
-     */
-    public void setWindowSamples(int windowSamples) {
-        this.windowSamples=windowSamples;
-    }
-   
-    /**
-     * Set maximum number of pulses to search for in Mode-1 data.
-     */
-    public void setNPeak(int nPeak) {
-        if (nPeak<1 || nPeak>3) {
-            throw new RuntimeException("Npeak must be 1, 2, or 3.");
-        }
-        this.nPeak=nPeak;
-    }
-    
-    /**
-     * Set Mode-7 emulation on/off.  If off, falls back to Mode-3.  
-     */
-    public void setMode7(boolean mode7)
-    {
-        this.mode7=mode7;
-    }
-
-    /**
-     * Set global gain value and turn on constant gain.
-     * The 442 gains from the conditions system will be ignored.
-     */
-    public void setGain(double gain) {
-        constantGain = true;
-        this.gain = gain;
-    }
-
-    /**
-     * Chooses which ADC --> Energy convention is used.
-     * 
-     * If true, the relationship between ADC and GeV is a convention that
-     * includes readoutPeriod and a global scaling factor.
-     * 
-     * If false, it is the currently used convention:  E(GeV) = GAIN * ADC 
-     */
-    public void setUse2014Gain(boolean use2014Gain) {
-        this.use2014Gain = use2014Gain;
-    }
-
-    /**
-     * Enables using running pedestals calculated on the fly from previous events.
-     * If false, uses 442 fixed pedestals from the conditions system. 
-     * 
-     * Only applies to FADC Mode-1/7 input data formats.  
-     */
-    public void setUseRunningPedestal(boolean useRunningPedestal) {
-        this.useRunningPedestal=useRunningPedestal;
-    }
-
-    /**
-     * Set whether to use timewalk corrections. 
-     */
-    public void setUseTimeWalkCorrection(boolean useTimeWalkCorrection) {
-        this.useTimeWalkCorrection=useTimeWalkCorrection;
-    }
-    
-    /**
-     * Set whether to use DAQ configuration read from EVIO to set EcalRawConverter parameters.
-     * This should be removed to a standalone EcalRawCongverterDriver solely
-     * for trigger emulation.
+
+    /**
+     * Set whether to use DAQ configuration read from EVIO to set EcalRawConverter parameters. This should be removed to
+     * a standalone EcalRawCongverterDriver solely for trigger emulation.
      */
     public void setUseDAQConfig(boolean state) {
         useDAQConfig = state;
     }
+
+
+
     
 
-
-    /**
-     * Integrate the entire window.  Return pedestal-subtracted integral.
-     */
-    public int sumADC(RawTrackerHit hit) {
-        EcalChannelConstants channelData = findChannel(hit.getCellID());
-        double pedestal;
-        if(useDAQConfig) {
-            //EcalChannel channel = ecalConditions.getChannelCollection().findGeometric(hit.getCellID());
-            pedestal = config.getPedestal(hit.getCellID());
-        } else {
-            pedestal = channelData.getCalibration().getPedestal();
-        }
-        
-        int sum = 0;
-        short samples[] = hit.getADCValues();
-        for (int isample = 0; isample < samples.length; ++isample) {
-            sum += (samples[isample] - pedestal);
-        }
-        return sum;
-    }
-
-    /**
-     * This should probably be deprecated.  HitDtoA(EventHeader,RawTrackerHit)
-     * has the same functionality if NSA+NSB > windowSamples, with the exception
-     * that that one also finds pulse time instead of this one's always reporting zero.
-     */
-    public CalorimeterHit HitDtoA(RawTrackerHit hit) {
-        double time = hit.getTime();
-        long id = hit.getCellID();
-        double rawEnergy = adcToEnergy(sumADC(hit), id);
-        return CalorimeterHitUtilities.create(rawEnergy, time, id);
-    }
-
-    /**
-     * Get pedestal for a single ADC sample.
-     * Choose whether to use static pedestal from database or running pedestal from mode-7.
-     */
-    public double getSingleSamplePedestal(EventHeader event,long cellID) {
-        if(useDAQConfig) {
-            //EcalChannel channel = ecalConditions.getChannelCollection().findGeometric(cellID);
+    /**
+     * Get pedestal for a single ADC sample. Choose whether to use static pedestal from database or running pedestal
+     * from mode-7.
+     */
+    public double getSingleSamplePedestal(EventHeader event, long cellID) {
+        if (useDAQConfig) {
+            // EcalChannel channel =
+            // ecalConditions.getChannelCollection().findGeometric(cellID);
             return config.getPedestal(cellID);
         }
-        if (useRunningPedestal && event!=null) {
+        if (useRunningPedestal && event != null) {
             if (event.hasItem("EcalRunningPedestals")) {
+                @SuppressWarnings("unchecked")
                 Map<EcalChannel, Double> runningPedMap = (Map<EcalChannel, Double>) event.get("EcalRunningPedestals");
                 EcalChannel chan = ecalConditions.getChannelCollection().findGeometric(cellID);
-                if (!runningPedMap.containsKey(chan)){
+                if (!runningPedMap.containsKey(chan)) {
                     System.err.println("************** Missing Pedestal");
                 } else {
                     return runningPedMap.get(chan);
@@ -388,314 +298,311 @@
     }
 
     /**
-     * Get pedestal for entire pulse integral.  Account for clipping if
-     * windowSamples is greater than zero.
-     */
-    public double getPulsePedestal(EventHeader event,long cellID,int windowSamples,int thresholdCrossing) {
-        int firstSample,lastSample;
-        if ( windowSamples>0 && (NSA+NSB)/nsPerSample >= windowSamples ) {
+     * Get pedestal for entire pulse integral. Account for clipping if windowSamples is greater than zero.
+     */
+    public double getPulsePedestal(EventHeader event, long cellID, int windowSamples, int thresholdCrossing) {
+        int firstSample, lastSample;
+        if (windowSamples > 0 && (NSA + NSB) / nsPerSample >= windowSamples) {
             // special case where firmware always integrates entire window
             firstSample = 0;
-            lastSample = windowSamples-1;
+            lastSample = windowSamples - 1;
         } else {
-            firstSample = thresholdCrossing - NSB/nsPerSample;
-            lastSample  = thresholdCrossing + NSA/nsPerSample-1;
+            firstSample = thresholdCrossing - NSB / nsPerSample;
+            lastSample = thresholdCrossing + NSA / nsPerSample - 1;
             if (windowSamples > 0) {
-                // properly pedestal subtract pulses clipped by edge(s) of readout window:
-                if (firstSample < 0) firstSample=0;
-                if (lastSample >= windowSamples) lastSample=windowSamples-1;
-            }
-        }
-        return (lastSample-firstSample+1)*getSingleSamplePedestal(event,cellID); 
-    }
-   
-    
-    /**
-     * Emulate the FADC250 firmware in conversion of Mode-1 waveform to a Mode-3/7 pulse,
-     * given a time for threshold crossing.
-     */
-    public double[] convertWaveformToPulse(RawTrackerHit hit,int thresholdCrossing,boolean mode7) {
-       
+                // properly pedestal subtract pulses clipped by edge(s) of
+                // readout window:
+                if (firstSample < 0)
+                    firstSample = 0;
+                if (lastSample >= windowSamples)
+                    lastSample = windowSamples - 1;
+            }
+        }
+        return (lastSample - firstSample + 1) * getSingleSamplePedestal(event, cellID);
+    }
+
+    /**
+     * Emulate the FADC250 firmware in conversion of Mode-1 waveform to a Mode-3/7 pulse, given a time for threshold
+     * crossing.
+     */
+    public double[] convertWaveformToPulse(RawTrackerHit hit, int thresholdCrossing, boolean mode7) {
+
         double fitQuality = -1;
-        
+
         short samples[] = hit.getADCValues();
-        //System.out.println("NewEvent");
+        // System.out.println("NewEvent");
         // choose integration range:
-        int firstSample,lastSample;
-        if ((NSA+NSB)/nsPerSample >= samples.length) {
+        int firstSample, lastSample;
+        if ((NSA + NSB) / nsPerSample >= samples.length) {
             // firmware treats this case specially:
             firstSample = 0;
-            lastSample = samples.length-1;
+            lastSample = samples.length - 1;
         } else {
-            firstSample = thresholdCrossing - NSB/nsPerSample;
-            lastSample  = thresholdCrossing + NSA/nsPerSample - 1;
-        }
-        
+            firstSample = thresholdCrossing - NSB / nsPerSample;
+            lastSample = thresholdCrossing + NSA / nsPerSample - 1;
+        }
+
         // mode-7's minimum/pedestal (average of first 4 samples):
-        double minADC=0;
-        for (int jj=0; jj<4; jj++) minADC += samples[jj];
-        // does the firmware's conversion of min to int occur before or after time calculation?  undocumented.
-        //minADC=(int)(minADC/4); 
-        minADC = (minADC/4);
-        
-        //System.out.println("Avg pedestal:\t"+minADC);
-        
+        double minADC = 0;
+        for (int jj = 0; jj < 4; jj++)
+            minADC += samples[jj];
+        // does the firmware's conversion of min to int occur before or after
+        // time calculation? undocumented.
+        // minADC=(int)(minADC/4);
+        minADC = (minADC / 4);
+
+        // System.out.println("Avg pedestal:\t"+minADC);
+
         // mode-7's max pulse height:
-        double maxADC=0;
-        //int sampleMaxADC=0;
-        
+        double maxADC = 0;
+        // int sampleMaxADC=0;
+
         // mode-3/7's pulse integral:
         double sumADC = 0;
-        
-        for (int jj=firstSample; jj<=lastSample; jj++) {
-        
-            if (jj<0) continue;
-            if (jj>=samples.length) break;
-            
+
+        for (int jj = firstSample; jj <= lastSample; jj++) {
+
+            if (jj < 0)
+                continue;
+            if (jj >= samples.length)
+                break;
+
             // integrate pulse:
             sumADC += samples[jj];
         }
 
         // find pulse maximum:
-        //if (jj>firstSample && jj<samples.length-5) { // The "5" here is a firmware constant.
-        for (int jj=thresholdCrossing; jj<samples.length-5; jj++) { // The "5" here is a firmware constant.
-            if (samples[jj+1]<samples[jj]){ 
-                //sampleMaxADC=jj;
-                maxADC=samples[jj];
-                break;                
-            }
-        }
-
+        // if (jj>firstSample && jj<samples.length-5) { // The "5" here is a
+        // firmware constant.
+        for (int jj = thresholdCrossing; jj < samples.length - 5; jj++) { // The
+                                                                          // "5"
+                                                                          // here
+                                                                          // is
+                                                                          // a
+                                                                          // firmware
+                                                                          // constant.
+            if (samples[jj + 1] < samples[jj]) {
+                // sampleMaxADC=jj;
+                maxADC = samples[jj];
+                break;
+            }
+        }
 
         // pulse time with 4ns resolution:
-        double pulseTime=thresholdCrossing*nsPerSample;
+        double pulseTime = thresholdCrossing * nsPerSample;
 
         // calculate Mode-7 high-resolution time:
         if (mode7) {
             if (thresholdCrossing < 4) {
-                // special case where firmware sets max to zero and time to 4ns time.
-                maxADC=0;
-            }
-            else if (maxADC>0) {
+                // special case where firmware sets max to zero and time to 4ns
+                // time.
+                maxADC = 0;
+            } else if (maxADC > 0) {
                 // linear interpolation between threshold crossing and
                 // pulse maximum to find time at pulse half-height:
 
-                final double halfMax = (maxADC+minADC)/2;
+                final double halfMax = (maxADC + minADC) / 2;
                 int t0 = -1;
-                for (int ii=thresholdCrossing-1; ii<lastSample; ii++)
-                {
-                    if (ii>=samples.length-1) break;
-                    if (samples[ii]<=halfMax && samples[ii+1]>halfMax)
-                    {
+                for (int ii = thresholdCrossing - 1; ii < lastSample; ii++) {
+                    if (ii >= samples.length - 1)
+                        break;
+                    if (samples[ii] <= halfMax && samples[ii + 1] > halfMax) {
                         t0 = ii;
                         break;
                     }
                 }
-                if (t0 > 0)
-                {
+                if (t0 > 0) {
                     final int t1 = t0 + 1;
                     final int a0 = samples[t0];
                     final int a1 = samples[t1];
-                    //final double slope = (a1 - a0); // units = ADC/sample
-                    //final double yint = a1 - slope * t1;  // units = ADC 
-                    pulseTime = ((halfMax - a0)/(a1-a0) + t0)* nsPerSample;
+                    // final double slope = (a1 - a0); // units = ADC/sample
+                    // final double yint = a1 - slope * t1; // units = ADC
+                    pulseTime = ((halfMax - a0) / (a1 - a0) + t0) * nsPerSample;
                 }
             }
         }
-        
-        if (useFit)
-        {
-          IFitResult fitResult = pulseFitter.fitPulse(hit,thresholdCrossing,maxADC);
-          if (fitResult!=null) {
-            fitQuality = fitResult.quality();
-            if (fitQuality > 0) {
-                pulseTime = fitResult.fittedParameter("time0")*nsPerSample;
-                sumADC = fitResult.fittedParameter("integral");
-                minADC = fitResult.fittedParameter("pedestal");
-                maxADC = ((Ecal3PoleFunction)fitResult.fittedFunction()).maximum();
-            } 
-          }
-        }
-        
-        return new double []{pulseTime,sumADC,minADC,maxADC,fitQuality};
-    }
-   
-    
-    /**
-     * This HitDtoA is for emulating the conversion of Mode-1 readout (RawTrackerHit)
-     * into what EcalRawConverter would have created from a Mode-3 or Mode-7 readout.
-     * Clustering classes will read the resulting CalorimeterHits same as if they were
-     * directly readout from the FADCs in Mode-3/7.
-     * 
-     * For Mode-3, hit time is just the time of threshold crossing, with an optional
-     * time-walk correction.  For Mode-7, it is a "high-resolution" one calculated
-     * by linear interpolation between threshold crossing and pulse maximum.
-     *
-     * TODO: Generate GenericObject (and corresponding LCRelation) to store min and max
-     * to fully emulate mode-7.  This is less important for now.
-     *
-     */
-    public ArrayList <CalorimeterHit> HitDtoA(EventHeader event, RawTrackerHit hit) {
+
+        if (useFit) {
+            IFitResult fitResult = pulseFitter.fitPulse(hit, thresholdCrossing, maxADC);
+            if (fitResult != null) {
+                fitQuality = fitResult.quality();
+                if (fitQuality > 0) {
+                    pulseTime = fitResult.fittedParameter("time0") * nsPerSample;
+                    sumADC = fitResult.fittedParameter("integral");
+                    minADC = fitResult.fittedParameter("pedestal");
+                    maxADC = ((Ecal3PoleFunction) fitResult.fittedFunction()).maximum();
+                }
+            }
+        }
+
+        return new double[] {pulseTime, sumADC, minADC, maxADC, fitQuality};
+    }
+
+    /**
+     * This HitDtoA is for emulating the conversion of Mode-1 readout (RawTrackerHit) into what EcalRawConverter would
+     * have created from a Mode-3 or Mode-7 readout. Clustering classes will read the resulting CalorimeterHits same as
+     * if they were directly readout from the FADCs in Mode-3/7. For Mode-3, hit time is just the time of threshold
+     * crossing, with an optional time-walk correction. For Mode-7, it is a "high-resolution" one calculated by linear
+     * interpolation between threshold crossing and pulse maximum. TODO: Generate GenericObject (and corresponding
+     * LCRelation) to store min and max to fully emulate mode-7. This is less important for now.
+     */
+    public ArrayList<CalorimeterHit> HitDtoA(EventHeader event, RawTrackerHit hit) {
         final long cellID = hit.getCellID();
         final short samples[] = hit.getADCValues();
-        if(samples.length == 0) return null;
-        
+        if (samples.length == 0)
+            return null;
+
         // threshold is pedestal plus threshold configuration parameter:
         final int absoluteThreshold;
-        if(useDAQConfig) {
-            //EcalChannel channel = ecalConditions.getChannelCollection().findGeometric(hit.getCellID());
-            //int leadingEdgeThreshold = ConfigurationManager.getInstance().getFADCConfig().getThreshold(channel.getChannelId());
+        if (useDAQConfig) {
+            // EcalChannel channel =
+            // ecalConditions.getChannelCollection().findGeometric(hit.getCellID());
+            // int leadingEdgeThreshold =
+            // ConfigurationManager.getInstance().getFADCConfig().getThreshold(channel.getChannelId());
             int leadingEdgeThreshold = config.getThreshold(cellID);
             absoluteThreshold = (int) (getSingleSamplePedestal(event, cellID) + leadingEdgeThreshold);
         } else {
             absoluteThreshold = (int) (getSingleSamplePedestal(event, cellID) + leadingEdgeThreshold);
         }
-        
-        ArrayList <Integer> thresholdCrossings = new ArrayList<Integer>();
-        
+
+        ArrayList<Integer> thresholdCrossings = new ArrayList<Integer>();
+
         // special case, first sample is above threshold:
         if (samples[0] > absoluteThreshold) {
             thresholdCrossings.add(0);
-        } 
-        
+        }
+
         // search for threshold crossings:
-        for(int ii = 1; ii < samples.length; ++ii) {
-            if ( samples[ii]   >  absoluteThreshold && 
-                 samples[ii-1] <= absoluteThreshold) {
-                
+        for (int ii = 1; ii < samples.length; ++ii) {
+            if (samples[ii] > absoluteThreshold && samples[ii - 1] <= absoluteThreshold) {
+
                 // found one:
                 thresholdCrossings.add(ii);
 
-                // search for next threshold crossing begins at end of this pulse:
-                if(useDAQConfig && ConfigurationManager.getInstance().getFADCConfig().getMode() == 1) {
+                // search for next threshold crossing begins at end of this
+                // pulse:
+                if (useDAQConfig && ConfigurationManager.getInstance().getFADCConfig().getMode() == 1) {
                     // special case, emulating SSP:
                     ii += 8;
                 } else {
                     // "normal" case, emulating FADC250:
-                    ii += NSA/nsPerSample - 1;
+                    ii += NSA / nsPerSample - 1;
                 }
 
                 // firmware limit on # of peaks:
-                if (thresholdCrossings.size() >= nPeak) break;
-            }
-        }
-        
+                if (thresholdCrossings.size() >= nPeak)
+                    break;
+            }
+        }
+
         // make hits
-        ArrayList <CalorimeterHit> newHits = new ArrayList<CalorimeterHit>();
-        for(int thresholdCrossing : thresholdCrossings) {
+        ArrayList<CalorimeterHit> newHits = new ArrayList<CalorimeterHit>();
+        for (int thresholdCrossing : thresholdCrossings) {
             // do pulse integral:
             final double[] data = convertWaveformToPulse(hit, thresholdCrossing, mode7);
             double time = data[0];
             double sum = data[1];
-//            final double min = data[2]; // TODO: stick min and max in a GenericObject with an 
-//            final double max = data[3]; // LCRelation to finish mode-7 emulation
+            // final double min = data[2]; // TODO: stick min and max in a
+            // GenericObject with an
+            // final double max = data[3]; // LCRelation to finish mode-7
+            // emulation
             final double fitQuality = data[4];
+
+            if (!useFit || fitQuality <= 0) {
+                // do pedestal subtraction:
+                sum -= getPulsePedestal(event, cellID, samples.length, thresholdCrossing);
+            }
+
+            // do gain scaling using a dummy gain.  
             
-            if (!useFit || fitQuality<=0) {
-              // do pedestal subtraction:
-              sum -= getPulsePedestal(event, cellID, samples.length, thresholdCrossing);
-            }
-          
-            // do gain scaling:
-            double energy = adcToEnergy(sum, cellID);
-            
-            // do time-walk correction, mode-3 only:
-            if (!mode7 && useTimeWalkCorrection) {
-                time = EcalTimeWalk.correctTimeWalk(time,energy);
-            }
-            
-            // do time-walk correction, pulse-fitting only:
-            if (useFit && fitQuality>0 && useTimeWalkCorrection && mode7) {
-                time = EcalTimeWalk.correctTimeWalkPulseFitting(time,energy);
-
-            }
-          
-            time -= findChannel(cellID).getTimeShift().getTimeShift();
-
-            
-            newHits.add(CalorimeterHitUtilities.create(energy,time,cellID));
-        }
-        
+
+            newHits.add(CalorimeterHitUtilities.create(sum, time, cellID));
+        }
+
         return newHits;
     }
 
-    /**
-     * This HitDtoA is for Mode-3 data.  A time-walk correction can be applied.
-     */
-    public CalorimeterHit HitDtoA(EventHeader event,RawCalorimeterHit hit, double timeOffset) {
+   
+
+    /**
+     * This HitDtoA is for Mode-3 data. A time-walk correction can be applied.
+     */
+    public CalorimeterHit HitDtoA(EventHeader event, RawCalorimeterHit hit, double timeOffset) {
         if (hit.getTimeStamp() % 64 != 0) {
             System.out.println("unexpected timestamp " + hit.getTimeStamp());
         }
         double time = hit.getTimeStamp() / 16.0;
         long id = hit.getCellID();
-        double pedestal = getPulsePedestal(event,id,windowSamples,(int)time/nsPerSample);
+        double pedestal = getPulsePedestal(event, id, windowSamples, (int) time / nsPerSample);
         double adcSum = hit.getAmplitude() - pedestal;
-        double rawEnergy = adcToEnergy(adcSum, id);
-        if (useTimeWalkCorrection) {
-           time = EcalTimeWalk.correctTimeWalk(time,rawEnergy);
-        }
-        time -= findChannel(hit.getCellID()).getTimeShift().getTimeShift();
-        return CalorimeterHitUtilities.create(rawEnergy, time + timeOffset, id);
+        //double rawEnergy = adcToEnergy(adcSum);
+        
+        return CalorimeterHitUtilities.create(adcSum, time + timeOffset, id);
     }
 
     /**
      * This HitDtoA is exclusively for Mode-7 data, hence the GenericObject parameter.
      */
-    public CalorimeterHit HitDtoA(EventHeader event,RawCalorimeterHit hit, GenericObject mode7Data, double timeOffset) {
-        double time = hit.getTimeStamp() / 16.0; //timestamps use the full 62.5 ps resolution
+    public CalorimeterHit HitDtoA(EventHeader event, RawCalorimeterHit hit, GenericObject mode7Data, double timeOffset) {
+        double time = hit.getTimeStamp() / 16.0; // timestamps use the full 62.5
+                                                 // ps resolution
         long id = hit.getCellID();
-        double pedestal = getPulsePedestal(event,id,windowSamples,(int)time/nsPerSample);
+        double pedestal = getPulsePedestal(event, id, windowSamples, (int) time / nsPerSample);
         double adcSum = hit.getAmplitude() - pedestal;
-        double rawEnergy = adcToEnergy(adcSum, id);       
-        time -= findChannel(hit.getCellID()).getTimeShift().getTimeShift();
-        return CalorimeterHitUtilities.create(rawEnergy, time + timeOffset, id);
-    }
-
-    /**
-     * This converts a corrected pulse integral (pedestal-subtracted and gain-scaled)
-     * back into raw pulse integral with units ADC.
+        //double rawEnergy = adcToEnergy(adcSum);
+        return CalorimeterHitUtilities.create(adcSum, time + timeOffset, id);
+    }
+
+    /**
+     * This converts a corrected pulse integral (pedestal-subtracted and gain-scaled) back into raw pulse integral with
+     * units ADC.
      */
     public RawCalorimeterHit HitAtoD(CalorimeterHit hit) {
         int time = (int) (Math.round(hit.getTime() / 4.0) * 64.0);
         long id = hit.getCellID();
         // Get the channel data.
-        EcalChannelConstants channelData = findChannel(id);
+        //EcalChannelConstants channelData = findChannel(id);
         int amplitude;
         double pedestal = getPulsePedestal(null, id, windowSamples, (int) hit.getTime() / nsPerSample);
-        if (constantGain) {
-            amplitude = (int) Math.round((hit.getRawEnergy() / EcalUtils.MeV) / gain + pedestal);
-        } else {
-            amplitude = (int) Math.round((hit.getRawEnergy() / EcalUtils.MeV) / channelData.getGain().getGain() + pedestal);
-        }
-        time += findChannel(id).getTimeShift().getTimeShift();
+        amplitude = (int) Math.round((hit.getRawEnergy() / EcalUtils.MeV) / (EcalUtils.gainFactor * EcalUtils.ecalReadoutPeriod) + pedestal);
+       
+        // time += findChannel(id).getTimeShift().getTimeShift();
         RawCalorimeterHit h = new BaseRawCalorimeterHit(id, amplitude, time);
         return h;
     }
 
     /**
-     * return energy (units of GeV) corresponding to the ADC sum and crystal ID
-     */
-    private double adcToEnergy(double adcSum, long cellID) {
-
-        // Get the channel data.
-        EcalChannelConstants channelData = findChannel(cellID);
-        
-        if(useDAQConfig) {
-            //float gain = ConfigurationManager.getInstance().getFADCConfig().getGain(ecalConditions.getChannelCollection().findGeometric(cellID));
-            return config.getGain(cellID) * adcSum * EcalUtils.MeV;
-        }  else if(use2014Gain) {
-            if (constantGain) {
-                return adcSum * EcalUtils.gainFactor * EcalUtils.ecalReadoutPeriod;
-            } else {
-                return channelData.getGain().getGain() * adcSum * EcalUtils.gainFactor * EcalUtils.ecalReadoutPeriod; // should not be used for the moment (2014/02)
-            }
+     * This should probably be deprecated. HitDtoA(EventHeader,RawTrackerHit) has the same functionality if NSA+NSB >
+     * windowSamples, with the exception that that one also finds pulse time instead of this one's always reporting
+     * zero.
+     */
+    public CalorimeterHit HitDtoA(RawTrackerHit hit) {
+        double time = hit.getTime();
+        long id = hit.getCellID();
+        double adcSum = sumADC(hit);
+        return CalorimeterHitUtilities.create(adcSum, time, id);
+    }
+    
+    /**
+     * Integrate the entire window. Return pedestal-subtracted integral.
+     */
+    public int sumADC(RawTrackerHit hit) {
+        EcalChannelConstants channelData = findChannel(hit.getCellID());
+        double pedestal;
+        if (useDAQConfig) {
+            // EcalChannel channel =
+            // ecalConditions.getChannelCollection().findGeometric(hit.getCellID());
+            pedestal = config.getPedestal(hit.getCellID());
         } else {
-            if(constantGain) {
-                return gain * adcSum * EcalUtils.MeV;
-            } else {
-                return channelData.getGain().getGain() * adcSum * EcalUtils.MeV; //gain is defined as MeV/integrated ADC
-            }
-        }
+            pedestal = channelData.getCalibration().getPedestal();
+        }
+
+        int sum = 0;
+        short samples[] = hit.getADCValues();
+        for (int isample = 0; isample < samples.length; ++isample) {
+            sum += (samples[isample] - pedestal);
+        }
+        return sum;
     }
 
     /**
@@ -718,10 +625,5 @@
     public EcalChannelConstants findChannel(long cellID) {
         return ecalConditions.getChannelConstants(ecalConditions.getChannelCollection().findGeometric(cellID));
     }
-
-
-    public void setFixedWidth(boolean fixedWidth) {
-       this.pulseFitter.fixShapeParameter = fixedWidth;
-    }
-    
+     
 }

Modified: java/branches/converter-div/ecal-recon/src/main/java/org/hps/recon/ecal/EcalRawConverterDriver.java
 =============================================================================
--- java/branches/converter-div/ecal-recon/src/main/java/org/hps/recon/ecal/EcalRawConverterDriver.java	(original)
+++ java/branches/converter-div/ecal-recon/src/main/java/org/hps/recon/ecal/EcalRawConverterDriver.java	Fri Oct 21 12:23:19 2016
@@ -18,12 +18,13 @@
 import org.lcsim.util.Driver;
 
 /**
- * This <code>Driver</code> converts raw ECal data collections to {@link org.lcsim.event.CalorimeterHit} collections 
- * with energy and time information.  The {@link EcalRawConverter} does most of the low-level work.
+ * This <code>Driver</code> converts raw ECal data collections to {@link org.lcsim.event.CalorimeterHit} collections
+ * with energy and time information. The {@link EcalRawConverter} does most of the low-level work.
  * <p>
  * The following input collections are used:
  * <ul>
- * <li>EcalReadoutHits<li>
+ * <li>EcalReadoutHits
+ * <li>
  * <li>EcalReadoutExtraDataRelations</li>
  * <li>EcalRunningPedestals</li>
  * </ul>
@@ -37,21 +38,20 @@
 
     private EcalRawConverter converter = null;
     /**
-     * Input collection name (unless runBackwards=true, then it's output).
-     * Can be a {@link org.lcsim.event.RawTrackerHit} or {@link org.lcsim.event.RawCalorimeterHit}
-     * These have ADC and sample time information.
+     * Input collection name (unless runBackwards=true, then it's output). Can be a
+     * {@link org.lcsim.event.RawTrackerHit} or {@link org.lcsim.event.RawCalorimeterHit} These have ADC and sample time
+     * information.
      */
     private String rawCollectionName = "EcalReadoutHits";
-    
-    /**
-     * Output collection name (unless runBackwards=true, then it's input).
-     * Always a {@link org.lcsim.event.CalorimeterHit}
-     * This has energy (GeV) and ns time information.
-     */
-    private String ecalCollectionName = "EcalCalHits";
-
-    /**
-     * ecalCollectionName "type" (must match detector-data) 
+
+    /**
+     * Output collection name (unless runBackwards=true, then it's input). Always a
+     * {@link org.lcsim.event.CalorimeterHit} This has energy (GeV) and ns time information.
+     */
+    private String ecalCollectionName = "EcalUncalHits";
+
+    /**
+     * ecalCollectionName "type" (must match detector-data)
      */
     private final String ecalReadoutName = "EcalHits";
 
@@ -61,58 +61,52 @@
     private static final String extraDataRelationsName = "EcalReadoutExtraDataRelations";
 
     private boolean debug = false;
-    
-    /**
-     * Hit threshold in GeV.  Anything less will not be put into LCIO. 
+
+    /**
+     * Hit threshold in GeV. Anything less will not be put into LCIO.
      */
     private double threshold = Double.NEGATIVE_INFINITY;
-    
-    /**
-     * Whether to reject bad crystals. 
+
+    /**
+     * Whether to reject bad crystals.
      */
     private boolean applyBadCrystalMap = true;
-    
+
     /**
      * Whether to reject bad FADC channels.
      */
     private boolean dropBadFADC = false;
-    
-    /**
-     * If true, convert ecalCollectionName to rawCollectionName (GeV to ADC).
-     * Else, convert rawCollectionName to ecalCollectionName (ADC to GeV).
+
+    /**
+     * If true, convert ecalCollectionName to rawCollectionName (GeV to ADC). Else, convert rawCollectionName to
+     * ecalCollectionName (ADC to GeV).
      */
     private boolean runBackwards = false;
-  
+
     /**
      * 
      */
     private boolean useTimestamps = false;
-    
+
     /**
      * 
      */
     private boolean useTruthTime = false;
-    
-    /**
-     * Whether to use DAQ config read from EVIO for EcalRawConverter parameters.
-     * Should be completely removed to a standalone class soilely for trigger emulation.
+
+    /**
+     * Whether to use DAQ config read from EVIO for EcalRawConverter parameters. Should be completely removed to a
+     * standalone class soilely for trigger emulation.
      */
     private boolean useDAQConfig = false;
 
     /**
-     * Whether to perform "firmware algorithm" on Mode-1 data.
-     * 
-     * If so, this includes finding a threshold crossing, extracting
-     * a pulse time, and integrating over some configurable sample
-     * range inside the window to extract pulse integral.
-     * 
-     * If not, it simply integrates the entire window and makes
-     * no attempt at extracting pulse time.
-     * 
-     * This is poorly named.
+     * Whether to perform "firmware algorithm" on Mode-1 data. If so, this includes finding a threshold crossing,
+     * extracting a pulse time, and integrating over some configurable sample range inside the window to extract pulse
+     * integral. If not, it simply integrates the entire window and makes no attempt at extracting pulse time. This is
+     * poorly named.
      */
     private boolean emulateFirmware = true;
-    
+
     public EcalRawConverterDriver() {
         converter = new EcalRawConverter();
     }
@@ -120,74 +114,61 @@
     /**
      * Set to <code>true</code> to use pulse fitting instead of arithmetic integration:<br/>
      */
-    public void setUseFit(boolean useFit) { converter.setUseFit(useFit); }
-    
-    /**
-     * Fix 3-pole function width to be the same for all 442 ECal channels.  Units=samples.
-     */
-    public void setGlobalFixedPulseWidth(double width) { converter.setGlobalFixedPulseWidth(width); }
-    
+    public void setUseFit(boolean useFit) {
+        converter.setUseFit(useFit);
+    }
+
+    /**
+     * Fix 3-pole function width to be the same for all 442 ECal channels. Units=samples.
+     */
+    public void setGlobalFixedPulseWidth(double width) {
+        converter.setGlobalFixedPulseWidth(width);
+    }
+
     /**
      * Set to <code>true</code> to fix fitted pulse widths to their channel's mean value:<br/>
      */
-    public void setFixShapeParameter(boolean fix) { converter.setFixShapeParameter(fix); }
-   
-    /**
-     * Limit threshold crossing range that is candidate for pulse-fitting.   Units=samples.
-     */
-    public void setFitThresholdTimeLo(int sample) { converter.setFitThresholdTimeLo(sample); }
-    public void setFitThresholdTimeHi(int sample) { converter.setFitThresholdTimeHi(sample); }
-    
-    /**
-     * Constrain pulse fit time0 parameter.  Units=samples. 
-     */
-    public void setFitLimitTimeLo(int sample) { converter.setFitLimitTimeLo(sample); }
-    public void setFitLimitTimeHi(int sample) { converter.setFitLimitTimeHi(sample); }
-    
-    /**
-     * Set to <code>true</code> to use the "2014" gain formula:<br/>
-     * <pre>channelGain * adcSum * gainFactor * readoutPeriod</pre>
-     * <p>
-     * Set to <code>false</code> to use the gain formula for the Test Run:
-     * <pre>gain * adcSum * ECalUtils.MeV</pre> 
-     * 
-     * @param use2014Gain True to use 2014 gain formulation.
-     */
-    public void setUse2014Gain(boolean use2014Gain) {
-        converter.setUse2014Gain(use2014Gain);
-    }
-
-    /**
-     * Set to <code>true</code> to apply time walk correction from {@link EcalTimeWalk#correctTimeWalk(double, double)}.
-     * <p>
-     * This is only applicable to Mode-3 data.
-     * 
-     * @param useTimeWalkCorrection True to apply time walk correction.
-     */
-    public void setUseTimeWalkCorrection(boolean useTimeWalkCorrection) {
-        converter.setUseTimeWalkCorrection(useTimeWalkCorrection);
-    }
-    
+    public void setFixShapeParameter(boolean fix) {
+        converter.setFixShapeParameter(fix);
+    }
+
+    /**
+     * Limit threshold crossing range that is candidate for pulse-fitting. Units=samples.
+     */
+    public void setFitThresholdTimeLo(int sample) {
+        converter.setFitThresholdTimeLo(sample);
+    }
+
+    public void setFitThresholdTimeHi(int sample) {
+        converter.setFitThresholdTimeHi(sample);
+    }
+
+    /**
+     * Constrain pulse fit time0 parameter. Units=samples.
+     */
+    public void setFitLimitTimeLo(int sample) {
+        converter.setFitLimitTimeLo(sample);
+    }
+
+    public void setFitLimitTimeHi(int sample) {
+        converter.setFitLimitTimeHi(sample);
+    }
+
     /**
      * Set to <code>true</code> to use a running pedestal calibration from mode 7 data.
      * <p>
-     * The running pedestal values are retrieved from the event collection "EcalRunningPedestals"
-     * which is a <code>Map</code> between {@link org.hps.conditions.ecal.EcalChannel} objects
-     * are their average pedestal.
+     * The running pedestal values are retrieved from the event collection "EcalRunningPedestals" which is a
+     * <code>Map</code> between {@link org.hps.conditions.ecal.EcalChannel} objects are their average pedestal.
      * 
      * @param useRunningPedestal True to use a running pedestal value.
      */
     public void setUseRunningPedestal(boolean useRunningPedestal) {
         converter.setUseRunningPedestal(useRunningPedestal);
     }
-    
-    public void setFixedWidth(boolean fixedWidth){
-        this.converter.setFixedWidth(fixedWidth);
-    }
-
-    /**
-     * Set to <code>true</code> to generate a {@link org.lcsim.event.CalorimeterHit} 
-     * collection which is a conversion from energy to raw signals.
+
+    /**
+     * Set to <code>true</code> to generate a {@link org.lcsim.event.CalorimeterHit} collection which is a conversion
+     * from energy to raw signals.
      * 
      * @param runBackwards True to run the procedure backwards.
      */
@@ -196,8 +177,7 @@
     }
 
     /**
-     * Set to <code>true</code> to drop hits that are mapped to a hard-coded 
-     * bad FADC configuration from the Test Run.
+     * Set to <code>true</code> to drop hits that are mapped to a hard-coded bad FADC configuration from the Test Run.
      * 
      * @param dropBadFADC True to drop hits mapped to a bad FADC.
      */
@@ -206,8 +186,9 @@
     }
 
     /**
-     * Set a minimum energy threshold in GeV for created {@link org.lcsim.event.CalorimeterHit}
-     * objects to be written into the output collection.
+     * Set a minimum energy threshold in GeV for created {@link org.lcsim.event.CalorimeterHit} objects to be written
+     * into the output collection.
+     * 
      * @param threshold The minimum energy threshold in GeV.
      */
     public void setThreshold(double threshold) {
@@ -215,15 +196,14 @@
     }
 
     /**
-     * Set to <code>true</code> to use Mode-7 emulation in calculations.
-     * False is Mode-3.
+     * Set to <code>true</code> to use Mode-7 emulation in calculations. False is Mode-3.
      * 
      * @param mode7 True to use Mode-7 emulation in calculations.
      */
     public void setEmulateMode7(boolean mode7) {
         converter.setMode7(mode7);
     }
-    
+
     /**
      * Set to <code>true</code> to emulate firmware conversion of Mode-1 to Mode-3/7 data.
      * 
@@ -232,10 +212,9 @@
     public void setEmulateFirmware(boolean emulateFirmware) {
         this.emulateFirmware = emulateFirmware;
     }
-    
-    /**
-     * Set the leading-edge threshold in ADC counts, relative to pedestal, for pulse-finding 
-     * and time determination.
+
+    /**
+     * Set the leading-edge threshold in ADC counts, relative to pedestal, for pulse-finding and time determination.
      * <p>
      * Used to convert Mode-1 readout into Mode-3 or Mode-7 data that is usable by clustering.
      * 
@@ -244,24 +223,24 @@
     public void setLeadingEdgeThreshold(double threshold) {
         converter.setLeadingEdgeThreshold(threshold);
     }
-    
+
     /**
      * Set the number of samples in the FADC readout window.
      * <p>
-     * This is needed in order to properly pedestal-correct clipped pulses for mode-3 and mode-7.  
-     * It is ignored for mode-1 input, since this data already includes the number of samples.
-     * <p>
-     * A non-positive number disables pulse-clipped pedestals and reverts to the old behavior which 
-     * assumed that the integration range was constant.
+     * This is needed in order to properly pedestal-correct clipped pulses for mode-3 and mode-7. It is ignored for
+     * mode-1 input, since this data already includes the number of samples.
+     * <p>
+     * A non-positive number disables pulse-clipped pedestals and reverts to the old behavior which assumed that the
+     * integration range was constant.
      * 
      * @param windowSamples The number of samples in the FADC readout window.
      */
     public void setWindowSamples(int windowSamples) {
         converter.setWindowSamples(windowSamples);
     }
-    
-    /**
-     * Set the integration range in nanoseconds after the threshold crossing. 
+
+    /**
+     * Set the integration range in nanoseconds after the threshold crossing.
      * <p>
      * These numbers must be multiples of 4 nanoseconds.
      * <p>
@@ -273,7 +252,7 @@
     public void setNsa(int nsa) {
         converter.setNSA(nsa);
     }
-    
+
     /**
      * Set the integration range in nanoseconds before the threshold crossing.
      * <p>
@@ -287,28 +266,19 @@
     public void setNsb(int nsb) {
         converter.setNSB(nsb);
     }
-    
-    /**
-     * Set the maximum number of peaks to search for in the signal, 
-     * which must be between 1 and 3, inclusive.
+
+    /**
+     * Set the maximum number of peaks to search for in the signal, which must be between 1 and 3, inclusive.
+     * 
      * @param nPeak The maximum number of peaks to search for in the signal.
      */
     public void setNPeak(int nPeak) {
         converter.setNPeak(nPeak);
     }
-    
-    /**
-     * Set a constant gain factor in the converter for all channels.
-     * @param gain The constant gain value.
-     */
-    public void setGain(double gain) {
-        converter.setGain(gain);
-    }
-
-    /**
-     * Set the {@link org.lcsim.event.CalorimeterHit} collection name,
-     * which is used as input in "normal" mode and output when running
-     * "backwards".
+
+    /**
+     * Set the {@link org.lcsim.event.CalorimeterHit} collection name, which is used as input in "normal" mode and
+     * output when running "backwards".
      * 
      * @param ecalCollectionName The <code>CalorimeterHit</code> collection name.
      * @see #runBackwards
@@ -318,13 +288,10 @@
     }
 
     /**
-     * Set the raw collection name which is used as output in "normal" mode
-     * and input when running "backwards".
-     * <p>
-     * Depending on the Driver configuration, this could be a collection
-     * of {@link org.lcsim.event.RawTrackerHit} objects for Mode-1
-     * or {@link org.lcsim.event.RawCalorimeterHit} objects for Mode-3
-     * or Mode-7.
+     * Set the raw collection name which is used as output in "normal" mode and input when running "backwards".
+     * <p>
+     * Depending on the Driver configuration, this could be a collection of {@link org.lcsim.event.RawTrackerHit}
+     * objects for Mode-1 or {@link org.lcsim.event.RawCalorimeterHit} objects for Mode-3 or Mode-7.
      * 
      * @param rawCollectionName The raw collection name.
      */
@@ -333,8 +300,8 @@
     }
 
     /**
-     * Set to <code>true</code> to ignore data from channels that
-     * are flagged as "bad" in the conditions system.
+     * Set to <code>true</code> to ignore data from channels that are flagged as "bad" in the conditions system.
+     * 
      * @param apply True to ignore bad channels.
      */
     public void setApplyBadCrystalMap(boolean apply) {
@@ -343,52 +310,44 @@
 
     /**
      * Set to <code>true</code> to turn on debug output.
+     * 
      * @param debug True to turn on debug output.
      */
     public void setDebug(boolean debug) {
         this.debug = debug;
     }
-    
-    public void setDisplay(boolean display){
-        this.display = display;
-        converter.setDisplay(display);
-    }
-    private boolean display;
-    
 
     /**
      * Set to <code>true</code> to use timestamp information from the ECal or trigger.
+     * 
      * @param useTimestamps True to use timestamp information.
      */
-    // FIXME: What does this actually do?  What calculations does it affect?  
+    // FIXME: What does this actually do? What calculations does it affect?
     public void setUseTimestamps(boolean useTimestamps) {
         this.useTimestamps = useTimestamps;
     }
 
     /**
      * Set to <code>true</code> to use MC truth information.
+     * 
      * @param useTruthTime True to use MC truth information.
      */
-    // FIXME: What does this actually do?  What calculations does it affect?  
+    // FIXME: What does this actually do? What calculations does it affect?
     public void setUseTruthTime(boolean useTruthTime) {
         this.useTruthTime = useTruthTime;
     }
-    
-    /**
-     * Sets whether the driver should use the DAQ configuration from
-     * EvIO file for its parameters. If activated, the converter will
-     * obtain gains, thresholds, pedestals, the window size, and the
-     * pulse integration window from the EvIO file. This will replace
-     * and overwrite any manually defined settings.<br/>
+
+    /**
+     * Sets whether the driver should use the DAQ configuration from EvIO file for its parameters. If activated, the
+     * converter will obtain gains, thresholds, pedestals, the window size, and the pulse integration window from the
+     * EvIO file. This will replace and overwrite any manually defined settings.<br/>
      * <br/>
-     * Note that if this setting is active, the driver will not output
-     * any data until a DAQ configuration has been read from the data
-     * stream.
-     * @param state - <code>true</code> indicates that the configuration
-     * should be read from the DAQ data in an EvIO file. Setting this
-     * to <code>false</code> will cause the driver to use its regular
-     * manually-defined settings and pull gains and pedestals from the
-     * conditions database.
+     * Note that if this setting is active, the driver will not output any data until a DAQ configuration has been read
+     * from the data stream.
+     * 
+     * @param state - <code>true</code> indicates that the configuration should be read from the DAQ data in an EvIO
+     *            file. Setting this to <code>false</code> will cause the driver to use its regular manually-defined
+     *            settings and pull gains and pedestals from the conditions database.
      */
     public void setUseDAQConfig(boolean state) {
         useDAQConfig = state;
@@ -431,7 +390,8 @@
         return (getCrate(hit.getCellID()) == 1 && getSlot(hit.getCellID()) == 3);
     }
 
-    private static double getTimestamp(int system, EventHeader event) { //FIXME: copied from org.hps.readout.ecal.ReadoutTimestamp
+    private static double getTimestamp(int system, EventHeader event) { // FIXME: copied from
+                                                                        // org.hps.readout.ecal.ReadoutTimestamp
         if (event.hasCollection(GenericObject.class, "ReadoutTimestamps")) {
             List<GenericObject> timestamps = event.get(GenericObject.class, "ReadoutTimestamps");
             for (GenericObject timestamp : timestamps) {
@@ -449,12 +409,14 @@
     public void process(EventHeader event) {
         // Do not process the event if the DAQ configuration should be
         // used for value, but is not initialized.
-        if(useDAQConfig && !ConfigurationManager.isInitialized()) {
+        if (useDAQConfig && !ConfigurationManager.isInitialized()) {
+            System.out.println("useDaqConfig " + useDAQConfig);
+            System.out.println(ConfigurationManager.isInitialized());
             return;
         }
-        
+
         final int SYSTEM_TRIGGER = 0;
-//        final int SYSTEM_TRACKER = 1;
+        // final int SYSTEM_TRACKER = 1;
         final int SYSTEM_ECAL = 2;
 
         double timeOffset = 0.0;
@@ -469,27 +431,28 @@
         }
 
         int flags = 0;
-        flags += 1 << LCIOConstants.RCHBIT_TIME; //store hit time
-        flags += 1 << LCIOConstants.RCHBIT_LONG; //store hit position; this flag has no effect for RawCalorimeterHits
-
+        flags += 1 << LCIOConstants.RCHBIT_TIME; // store hit time
+        flags += 1 << LCIOConstants.RCHBIT_LONG; // store hit position; this flag has no effect for RawCalorimeterHits
+        
         if (!runBackwards) {
             ArrayList<CalorimeterHit> newHits = new ArrayList<CalorimeterHit>();
 
             /*
-             * This is for FADC Mode-1 data:    
+             * This is for FADC Mode-1 data:
              */
             if (event.hasCollection(RawTrackerHit.class, rawCollectionName)) {
+                if(debug) System.out.println("mode1");
                 List<RawTrackerHit> hits = event.get(RawTrackerHit.class, rawCollectionName);
 
                 for (RawTrackerHit hit : hits) {
-           
+
                     ArrayList<CalorimeterHit> newHits2 = new ArrayList<CalorimeterHit>();
                     if (emulateFirmware) {
-                        newHits2.addAll(converter.HitDtoA(event,hit));
+                        newHits2.addAll(converter.HitDtoA(event, hit));
                     } else {
                         newHits2.add(converter.HitDtoA(hit));
                     }
-               
+
                     for (CalorimeterHit newHit : newHits2) {
 
                         // Get the channel data.
@@ -507,17 +470,20 @@
                     }
                 }
                 event.put(ecalCollectionName, newHits, CalorimeterHit.class, flags, ecalReadoutName);
+                event.getMetaData(newHits).setTransient(true);
+               
             }
-           
+
             /*
              * This is for FADC pulse mode data (Mode-3 or Mode-7):
              */
-            if (event.hasCollection(RawCalorimeterHit.class, rawCollectionName)) { 
-
+            else if (event.hasCollection(RawCalorimeterHit.class, rawCollectionName)) {
+                if(debug)System.out.println("mode3or7");
                 /*
                  * This is for FADC Mode-7 data:
                  */
-                if (event.hasCollection(LCRelation.class, extraDataRelationsName)) { // extra information available from mode 7 readout
+                if (event.hasCollection(LCRelation.class, extraDataRelationsName)) { // extra information available from
+                    if(debug) System.out.println("mode7");                                                             // mode 7 readout
                     List<LCRelation> extraDataRelations = event.get(LCRelation.class, extraDataRelationsName);
                     for (LCRelation rel : extraDataRelations) {
                         RawCalorimeterHit hit = (RawCalorimeterHit) rel.getFrom();
@@ -526,7 +492,7 @@
                         }
                         GenericObject extraData = (GenericObject) rel.getTo();
                         CalorimeterHit newHit;
-                        newHit = converter.HitDtoA(event,hit, extraData, timeOffset);
+                        newHit = converter.HitDtoA(event, hit, extraData, timeOffset);
                         if (newHit.getRawEnergy() > threshold) {
                             if (applyBadCrystalMap && isBadCrystal(newHit)) {
                                 continue;
@@ -545,6 +511,7 @@
                     /*
                      * This is for FADC Mode-3 data:
                      */
+                    if(debug) System.out.println("mode3");
                     List<RawCalorimeterHit> hits = event.get(RawCalorimeterHit.class, rawCollectionName);
                     for (RawCalorimeterHit hit : hits) {
                         if (debug) {
@@ -567,6 +534,12 @@
                     }
                 }
                 event.put(ecalCollectionName, newHits, CalorimeterHit.class, flags, ecalReadoutName);
+                event.getMetaData(newHits).setTransient(true);
+            }
+            else {
+                if(debug) System.out.println("no raw hit collection");
+                event.put(ecalCollectionName, newHits, CalorimeterHit.class, flags, ecalReadoutName);
+                event.getMetaData(newHits).setTransient(true);
             }
         } else {
             ArrayList<RawCalorimeterHit> newHits = new ArrayList<RawCalorimeterHit>();
@@ -586,9 +559,11 @@
                     }
                 }
                 event.put(rawCollectionName, newHits, RawCalorimeterHit.class, flags, ecalReadoutName);
+                event.getMetaData(newHits).setTransient(true);
             }
         }
         
+
     }
 
     /**

Top of Message | Previous Page | Permalink

Advanced Options


Options

Log In

Log In

Get Password

Get Password


Search Archives

Search Archives


Subscribe or Unsubscribe

Subscribe or Unsubscribe


Archives

November 2017
August 2017
July 2017
January 2017
December 2016
November 2016
October 2016
September 2016
August 2016
July 2016
June 2016
May 2016
April 2016
March 2016
February 2016
January 2016
December 2015
November 2015
October 2015
September 2015
August 2015
July 2015
June 2015
May 2015
April 2015
March 2015
February 2015
January 2015
December 2014
November 2014
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013

ATOM RSS1 RSS2



LISTSERV.SLAC.STANFORD.EDU

Secured by F-Secure Anti-Virus CataList Email List Search Powered by the LISTSERV Email List Manager

Privacy Notice, Security Notice and Terms of Use