SemiLep-03/05
 BAD 2001, version 8

Collaboration-Wide Review

17 July 2008 to 24 July 2008

Primary BAD	2001, version 8
	Measurement of semileptonic B-decays into narrow orbitally excited charm states
Author list	Hauke, Armin
Review Committee	comm303, members: Godang, Romulus (chair); Robertson, Steven H.
Target	Physical Review Letters
Result type	
Supporting BAD(s)	BAD \#1081 Meassurement of Semileptonic \$B\$-decays into orbitally excited \$D\$-mesons.
Changes since preliminary result	
BAIS/CWR Comments	
Institutional Reading Groups	2b. Budker, UCLA, Colorado, Royal Holloway, McGill, MIT, Trieste 3b. UC Santa Barbara, Colorado State, Dortmund, Ohio State, Oregon, IRFU, Warwick

Cover page generated by BAIS on July 18, 2008

Measurement of Semileptonic B Decays into Orbitally-Excited Charmed Mesons

B. Aubert, ${ }^{1}$ M. Bona,,${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ E. Prencipe,,${ }^{1}$ X. Prudent, ${ }^{1}$ V. Tisserand, ${ }^{1}$ J. Garra Tico, ${ }^{2}$ E. Grauges, ${ }^{2}$ L. Lopez ${ }^{a b},{ }^{3}$ A. Palano ${ }^{a b},{ }^{3}$ M. Pappagallo ${ }^{a b},{ }^{3}$ G. Eigen, ${ }^{4}$ B. Stugu, ${ }^{4}$ L. Sun, ${ }^{4}$ G. S. Abrams, ${ }^{5}$ M. Battaglia, ${ }^{5}$ D. N. Brown, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ G. Lynch, ${ }^{5}$ I. L. Osipenkov, ${ }^{5}$ M. T. Ronan,,${ }^{5}{ }^{*}$ K. Tackmann, ${ }^{5}$ T. Tanabe, ${ }^{5}$ C. M. Hawkes, ${ }^{6}$ N. Soni, ${ }^{6}$ A. T. Watson, ${ }^{6}$
H. Koch, ${ }^{7}$ T. Schroeder, ${ }^{7}$ D. Walker, ${ }^{8}$ D. J. Asgeirsson, ${ }^{9}$ B. G. Fulsom, ${ }^{9}$ C. Hearty, ${ }^{9}$ T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ M. Barrett, ${ }^{10}$ A. Khan, ${ }^{10}$ V. E. Blinov, ${ }^{11}$ A. D. Bukin, ${ }^{11}$ A. R. Buzykaev, ${ }^{11}$ V. P. Druzhinin, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ A. P. Onuchin,,${ }^{11}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen, ${ }^{11}$ E. P. Solodov, ${ }^{11}$ K. Yu. Todyshev, ${ }^{11}$ M. Bondioli,,12 S. Curry, ${ }^{12}$ I. Eschrich, ${ }^{12}$ D. Kirkby, ${ }^{12}$ A. J. Lankford, ${ }^{12}$ P. Lund, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ E. C. Martin, ${ }^{12}$ D. P. Stoker, ${ }^{12}$ S. Abachi, ${ }^{13}$ C. Buchanan, ${ }^{13}$ J. W. Gary,,14 F. Liu, ${ }^{14}$ O. Long, ${ }^{14}$ B. C. Shen, ${ }^{14, ~ *}$ G. M. Vitug, ${ }^{14}$ Z. Yasin, ${ }^{14}$ L. Zhang, ${ }^{14}$ V. Sharma, ${ }^{15}$ C. Campagnari, ${ }^{16}$ T. M. Hong, ${ }^{16}$ D. Kovalskyi, ${ }^{16}$ M. A. Mazur, ${ }^{16}$ J. D. Richman, ${ }^{16}$ T. W. Beck, ${ }^{17}$ A. M. Eisner, ${ }^{17}$ C. J. Flacco, ${ }^{17}$ C. A. Heusch, ${ }^{17}$ J. Kroseberg, ${ }^{17}$ W. S. Lockman, ${ }^{17}$ A. J. Martinez, ${ }^{17}$ T. Schalk, ${ }^{17}$ B. A. Schumm, ${ }^{17}$ A. Seiden, ${ }^{17}$ M. G. Wilson, ${ }^{17}$ L. O. Winstrom, ${ }^{17}$ C. H. Cheng, ${ }^{18}$ D. A. Doll, ${ }^{18}$ B. Echenard, ${ }^{18}$ F. Fang, ${ }^{18}$ D. G. Hitlin, ${ }^{18}$ I. Narsky, ${ }^{18}$ T. Piatenko, ${ }^{18}$ F. C. Porter, ${ }^{18}$ R. Andreassen, ${ }^{19}$ G. Mancinelli, ${ }^{19}$ B. T. Meadows, ${ }^{19}$ K. Mishra, ${ }^{19}$ M. D. Sokoloff, ${ }^{19}$ P. C. Bloom, ${ }^{20}$ W. T. Ford, ${ }^{20}$ A. Gaz, ${ }^{20}$ J. F. Hirschauer, ${ }^{20}$ M. Nagel, ${ }^{20}$ U. Nauenberg, ${ }^{20}$ J. G. Smith, ${ }^{20}$ K. A. Ulmer, ${ }^{20}$ S. R. Wagner, ${ }^{20}$ R. Ayad, ${ }^{21, \dagger}$ A. Soffer, ${ }^{21, \ddagger}$ W. H. Toki, ${ }^{21}$ R. J. Wilson, ${ }^{21}$ D. D. Altenburg, ${ }^{22}$ E. Feltresi, ${ }^{22}$
A. Hauke, ${ }^{22}$ H. Jasper, ${ }^{22}$ M. Karbach, ${ }^{22}$ J. Merkel, ${ }^{22}$ A. Petzold, ${ }^{22}$ B. Spaan, ${ }^{22}$ K. Wacker, ${ }^{22}$ M. J. Kobel, ${ }^{23}$
W. F. Mader, ${ }^{23}$ R. Nogowski, ${ }^{23}$ K. R. Schubert, ${ }^{23}$ R. Schwierz, ${ }^{23}$ A. Volk, ${ }^{23}$ D. Bernard, ${ }^{24}$ G. R. Bonneaud, ${ }^{24}$ E. Latour, ${ }^{24}$ M. Verderi, ${ }^{24}$ P. J. Clark, ${ }^{25}$ S. Playfer, ${ }^{25}$ J. E. Watson, ${ }^{25}$ M. Andreotti ${ }^{a b},{ }^{26}$ D. Bettoni ${ }^{a},{ }^{26}$ C. Bozzi ${ }^{a}{ }^{26}$ R. Calabrese ${ }^{a b},{ }^{26}$ A. Cecchi ${ }^{a b},{ }^{26}$ G. Cibinetto ${ }^{a b},{ }^{26}$ P. Franchini ${ }^{a b},{ }^{26}$ E. Luppi ${ }^{a b},{ }^{26}$ M. Negrini ${ }^{a b},{ }^{26}$ A. Petrella ${ }^{a b},{ }^{26}$ L. Piemontese ${ }^{a},{ }^{26}$ V. Santoro ${ }^{a b},{ }^{26}$ R. Baldini-Ferroli, ${ }^{27}$ A. Calcaterra, ${ }^{27}$ R. de Sangro, ${ }^{27}$ G. Finocchiaro, ${ }^{27}$ S. Pacetti,,${ }^{27}$ P. Patteri, ${ }^{27}$ I. M. Peruzzi, ${ }^{27, \S}$ M. Piccolo, ${ }^{27}$ M. Rama, ${ }^{27}$ A. Zallo,,${ }^{27}$ A. Buzzo ${ }^{a},{ }^{28}$ R. Contri ${ }^{a b},{ }^{28}$ M. Lo Vetere ${ }^{a b},{ }^{28}$ M. M. Macri ${ }^{a},{ }^{28}$ M. R. Monge ${ }^{a b},{ }^{28}$ S. Passaggio ${ }^{a},{ }^{28}$ C. Patrignani ${ }^{a b},{ }^{28}$ E. Robutti ${ }^{a},{ }^{28}$
A. Santroni ${ }^{a b},{ }^{28}$ S. Tosi ${ }^{a b},{ }^{28}$ K. S. Chaisanguanthum, ${ }^{29}$ M. Morii, ${ }^{29}$ A. Adametz, ${ }^{30}$ J. Marks, ${ }^{30}$ S. Schenk, ${ }^{30}$ U. Uwer,,${ }^{30}$ V. Klose, ${ }^{31}$ H. M. Lacker, ${ }^{31}$ D. J. Bard, ${ }^{32}$ P. D. Dauncey, ${ }^{32}$ J. A. Nash, ${ }^{32}$ M. Tibbetts, ${ }^{32}$ P. K. Behera, ${ }^{33}$ X. Chai, ${ }^{33}$ M. J. Charles, ${ }^{33}$ U. Mallik, ${ }^{33}$ J. Cochran, ${ }^{34}$ H. B. Crawley, ${ }^{34}$ L. Dong, ${ }^{34}$ W. T. Meyer, ${ }^{34}$ S. Prell, ${ }^{34}$ E. I. Rosenberg, ${ }^{34}$ A. E. Rubin, ${ }^{34}$ Y. Y. Gao, ${ }^{35}$ A. V. Gritsan, ${ }^{35}$ Z. J. Guo, ${ }^{35}$ C. K. Lae, ${ }^{35}$ N. Arnaud, ${ }^{36}$ J. Béquilleux, ${ }^{36}$ A. D'Orazio, ${ }^{36}$ M. Davier, ${ }^{36}$ J. Firmino da Costa, ${ }^{36}$ G. Grosdidier, ${ }^{36}$ A. Höcker, ${ }^{36}$ V. Lepeltier, ${ }^{36}$ F. Le Diberder, ${ }^{36}$ A. M. Lutz, ${ }^{36}$ S. Pruvot, ${ }^{36}$ P. Roudeau, ${ }^{36}$ M. H. Schune, ${ }^{36}$ J. Serrano, ${ }^{36}$ V. Sordini, ${ }^{36, ~}{ }^{4}$ A. Stocchi, ${ }^{36}$ G. Wormser, ${ }^{36}$ D. J. Lange, ${ }^{37}$ D. M. Wright, ${ }^{37}$ I. Bingham, ${ }^{38}$ J. P. Burke, ${ }^{38}$ C. A. Chavez, ${ }^{38}$ J. R. Fry, ${ }^{38}$ E. Gabathuler, ${ }^{38}$ R. Gamet, ${ }^{38}$ D. E. Hutchcroft, ${ }^{38}$ D. J. Payne, ${ }^{38}$ C. Touramanis, ${ }^{38}$ A. J. Bevan, ${ }^{39}$ C. K. Clarke, ${ }^{39}$ K. A. George, ${ }^{39}$ F. Di Lodovico, ${ }^{39}$ R. Sacco, ${ }^{39}$ M. Sigamani, ${ }^{39}$ G. Cowan, ${ }^{40}$ H. U. Flaecher, ${ }^{40}$ D. A. Hopkins, ${ }^{40}$ S. Paramesvaran, ${ }^{40}$ F. Salvatore, ${ }^{40}$ A. C. Wren, ${ }^{40}$ D. N. Brown, ${ }^{41}$ C. L. Davis, ${ }^{41}$ A. G. Denig, ${ }^{42}$ M. Fritsch, ${ }^{42}$ W. Gradl, ${ }^{42}$ G. Schott, ${ }^{42}$ K. E. Alwyn, ${ }^{43}$ D. Bailey, ${ }^{43}$ R. J. Barlow, ${ }^{43}$ Y. M. Chia, ${ }^{43}$ C. L. Edgar, ${ }^{43}$ G. Jackson, ${ }^{43}$ G. D. Lafferty, ${ }^{43}$ T. J. West, ${ }^{43}$ J. I. Yi, ${ }^{43}$ J. Anderson, ${ }^{44}$ C. Chen, ${ }^{44}$ A. Jawahery, ${ }^{44}$ D. A. Roberts, ${ }^{44}$ G. Simi, ${ }^{44}$ J. M. Tuggle, ${ }^{44}$ C. Dallapiccola, ${ }^{45}$ X. Li, ${ }^{45}$ E. Salvati, ${ }^{45}$ S. Saremi, ${ }^{45}$ R. Cowan, ${ }^{46}$ D. Dujmic, ${ }^{46}$ P. H. Fisher, ${ }^{46}$ G. Sciolla, ${ }^{46}$ M. Spitznagel, ${ }^{46}$ F. Taylor, ${ }^{46}$ R. K. Yamamoto, ${ }^{46}$ M. Zhao, ${ }^{46}$ P. M. Patel,,${ }^{47}$ S. H. Robertson, ${ }^{47}$ A. Lazzaro ${ }^{a b},{ }^{48}$ V. Lombardo ${ }^{a},{ }^{48}$ F. Palombo ${ }^{a b},{ }^{48}$ J. M. Bauer, ${ }^{49}$ L. Cremaldi, ${ }^{49}$ R. Godang, ${ }^{49, * *}$ R. Kroeger, ${ }^{49}$ D. A. Sanders, ${ }^{49}$ D. J. Summers, ${ }^{49}$ H. W. Zhao, ${ }^{49}$ M. Simard, ${ }^{50}$ P. Taras, ${ }^{50}$ F. B. Viaud, ${ }^{50}$ H. Nicholson, ${ }^{51}$ G. De Nardo ${ }^{a b},{ }^{52}$ L. Lista ${ }^{a},{ }^{52}$ D. Monorchio ${ }^{a b},{ }^{52}$ G. Onorato ${ }^{a b}$, ${ }^{52}$ C. Sciacca ${ }^{a b},{ }^{52}$ G. Raven, ${ }^{53}$ H. L. Snoek, ${ }^{53}$ C. P. Jessop, ${ }^{54}$ K. J. Knoepfel, ${ }^{54}$ J. M. LoSecco, ${ }^{54}$ W. F. Wang, ${ }^{54}$ G. Benelli, ${ }^{55}$ L. A. Corwin, ${ }^{55}$ K. Honscheid, ${ }^{55}$ H. Kagan, ${ }^{55}$ R. Kass, ${ }^{55}$ J. P. Morris, ${ }^{55}$ A. M. Rahimi, ${ }^{55}$ J. J. Regensburger, ${ }^{55}$ S. J. Sekula, ${ }^{55}$ Q. K. Wong, ${ }^{55}$ N. L. Blount, ${ }^{56}$ J. Brau, ${ }^{56}$ R. Frey, ${ }^{56}$ O. Igonkina, ${ }^{56}$ J. A. Kolb, ${ }^{56}$ M. Lu, ${ }^{56}$ R. Rahmat, ${ }^{56}$ N. B. Sinev, ${ }^{56}$ D. Strom, ${ }^{56}$ J. Strube, ${ }^{56}$ E. Torrence, ${ }^{56}$ G. Castelli ${ }^{a b},{ }^{57}$ N. Gagliardi ${ }^{a b},{ }^{57}$ M. Margoni ${ }^{a b},{ }^{57}$ M. Morandin ${ }^{a},{ }^{57}$ M. Posocco ${ }^{a},{ }^{57}$ M. Rotondo ${ }^{a},{ }^{57}$ F. Simonetto ${ }^{a b},{ }^{57}$ R. Stroili ${ }^{a b},{ }^{57}$ C. Voci ${ }^{a b}$, ${ }^{57}$
P. del Amo Sanchez, ${ }^{58}$ E. Ben-Haim, ${ }^{58}$ H. Briand, ${ }^{58}$ G. Calderini, ${ }^{58}$ J. Chauveau,,${ }^{58}$ P. David, ${ }^{58}$ L. Del Buono,,${ }^{58}$ O. Hamon,,${ }^{58}$ Ph. Leruste, ${ }^{58}$ J. Ocariz, ${ }^{58}$ A. Perez, ${ }^{58}$ J. Prendki, ${ }^{58}$ S. Sitt, ${ }^{58}$ L. Gladney, ${ }^{59}$ M. Biasini ${ }^{a b}$, ${ }^{60}$ R. Covarelli ${ }^{a b b}$, ${ }^{60}$ E. Manoni ${ }^{a b b},{ }_{60}$ C. Angelini ${ }^{a b},{ }^{61}$ G. Batignani ${ }^{a b},{ }^{61}$ S. Bettarini ${ }^{a b},{ }^{61}$ M. Carpinelli ${ }^{a b},{ }^{61}{ }^{61}{ }^{\dagger} \dagger$
A. Cerveli ${ }^{a b},{ }^{61}$ F. Forti ${ }^{a b},{ }^{61}$ M. A. Giorgi ${ }^{a b},{ }^{61}$ A. Lusiani ${ }^{a c},{ }^{61}$ G. Marchiori ${ }^{a b},{ }^{61}$ M. Morganti ${ }^{a b},{ }^{a b}$ N. Neri ${ }^{a b},{ }^{61}$ E. Paoloni ${ }^{a b},{ }^{61}$ G. Rizzo ${ }^{a b},{ }^{61}$ J. J. Walsh ${ }^{a},{ }^{61}$ D. Lopes Pegna, ${ }^{62}$ C. Lu, ${ }^{62}$ J. Olsen, ${ }^{62}$ A. J. S. Smith, ${ }^{62}$ A. V. Telnov, ${ }^{62}$ F. Anulli ${ }^{a},{ }^{63}$ E. Baracchini ${ }^{a b},{ }^{63}$ G. Cavoto ${ }^{a},{ }^{63}$ D. del Re ${ }^{a b},{ }^{63}$ E. Di Marco ${ }^{a b},{ }^{63}$ R. Faccini ${ }^{a b},{ }^{63}$ F. Ferrarotto ${ }^{a},{ }^{63}$ F. Ferroni ${ }^{a b},{ }_{6}{ }^{63}$ M. Gaspero ${ }^{a b},{ }^{63}$ P. D. Jackson ${ }^{a}{ }^{63}$ L. Li Gioi ${ }^{6},{ }^{63}$ M. A. Mazzoni ${ }^{a},{ }^{63}$ S. Morganti ${ }^{a},{ }^{63}$ G. Piredda ${ }^{a},{ }^{63}$ F. Polci ${ }^{a b},{ }^{63}$ F. Renga ${ }^{a b},{ }^{63}$ C. Voena ${ }^{a},{ }^{63}$ M. Ebert, ${ }^{64}$ T. Hartmann, ${ }^{64}$ H. Schröder, ${ }^{64}$ R. Waldi, ${ }^{64}$ T. Adye, ${ }^{65}$ B. Franek, ${ }^{65}$ E. O. Olaiya, ${ }^{65}$ F. F. Wilson, ${ }^{65}$ S. Emery, ${ }^{66}$ M. Escalier, ${ }^{66}$ L. Esteve, ${ }^{66}$ S. F. Ganzhur, ${ }^{66}$ G. Hamel de Monchenault, ${ }^{66}$ W. Kozanecki, ${ }^{66}$ G. Vasseur, ${ }^{66}$ Ch. Yèche, ${ }^{66}$ M. Zito, ${ }^{66}$ X. R. Chen, ${ }^{67}$ H. Liu, ${ }^{67}$ W. Park, ${ }^{67}$ M. V. Purohit, ${ }^{67}$ R. M. White, ${ }^{67}$ J. R. Wilson,,${ }^{67}$ M. T. Allen, ${ }^{68}$ D. Aston, ${ }^{68}$ R. Bartoldus, ${ }^{68}$ P. Bechtle, ${ }^{68}$ J. F. Benitez, ${ }^{68}$ R. Cenci, ${ }^{68}$ J. P. Coleman, ${ }^{68}$ M. R. Convery, ${ }^{68}$ J. C. Dingfelder, ${ }^{68}$ J. Dorfan, ${ }^{68}$ G. P. Dubois-Felsmann, ${ }^{68}$ W. Dunwoodie, ${ }^{68}$ R. C. Field, ${ }^{68}$ A. M. Gabareen, ${ }^{68}$ S. J. Gowdy, ${ }^{68}$ M. T. Graham, ${ }^{68}$ P. Grenier, ${ }^{68}$ C. Hast, ${ }^{68}$ W. R. Innes, ${ }^{68}$ J. Kaminski, ${ }^{68}$ M. H. Kelsey, ${ }^{68}$ H. Kim,,${ }^{68}$ P. Kim, ${ }^{68}$ M. L. Kocian,,${ }^{68}$ D. W. G. S. Leith,,${ }^{68}$ S. Li, ${ }^{68}$ B. Lindquist, ${ }^{68}$ S. Luitz, ${ }^{68}$ V. Luth, ${ }^{68}$ H. L. Lynch, ${ }^{68}$ D. B. MacFarlane, ${ }^{68}$ H. Marsiske, ${ }^{68}$ R. Messner, ${ }^{68}$ D. R. Muller, ${ }^{68}$ H. Neal, ${ }^{68}$ S. Nelson, ${ }^{68}$ C. P. O'Grady, ${ }^{68}$ I. Ofte, ${ }^{68}$ A. Perazzo, ${ }^{68}$ M. Perl,,68 B. N. Ratcliff, ${ }^{68}$ A. Roodman, ${ }^{68}$ A. A. Salnikov, ${ }^{68}$ R. H. Schindler, ${ }^{68}$ J. Schwiening, ${ }^{68}$ A. Snyder, ${ }^{68}$ D. Su, ${ }^{68}$ M. K. Sullivan, ${ }^{68}$ K. Suzuki, ${ }^{68}$ S. K. Swain, ${ }^{68}$ J. M. Thompson, ${ }^{68}$ J. Va'vra, ${ }^{68}$ A. P. Wagner, ${ }^{68}$ M. Weaver, ${ }^{68}$ C. A. West, ${ }^{68}$ W. J. Wisniewski, ${ }^{68}$ M. Wittgen, ${ }^{68}$ D. H. Wright,,${ }^{68}$ H. W. Wulsin, ${ }^{68}$ A. K. Yarritu, ${ }^{68}$ K. Yi, ${ }^{68}$ C. C. Young, ${ }^{68}$ V. Ziegler, ${ }^{68}$ P. R. Burchat, ${ }^{69}$ A. J. Edwards, ${ }^{69}$ S. A. Majewski, ${ }^{69}$ T. S. Miyashita, ${ }^{69}$ B. A. Petersen, ${ }^{69}$ L. Wilden, ${ }^{69}$ S. Ahmed, ${ }^{70}$ M. S. Alam, ${ }^{70}$ J. A. Ernst, ${ }^{70}$ B. Pan, ${ }^{70}$ M. A. Saeed, ${ }^{70}$ S. B. Zain, ${ }^{70}$ S. M. Spanier, ${ }^{71}$ B. J. Wogsland, ${ }^{71}$ R. Eckmann, ${ }^{72}$ J. L. Ritchie, ${ }^{72}$ A. M. Ruland, ${ }^{72}$ C. J. Schilling, ${ }^{72}$ R. F. Schwitters, ${ }^{72}$ B. W. Drummond, ${ }^{73}$ J. M. Izen, ${ }^{73}$ X. C. Lou, ${ }^{73}$ F. Bianchi ${ }^{a b b},{ }^{74}$ D. Gamba ${ }^{a b},{ }^{74}$ M. Pelliccioni ${ }^{a b},{ }^{74}$ M. Bomben ${ }^{a b},{ }^{75}$ L. Bosisio ${ }^{a b},{ }^{75}$ C. Cartaro ${ }^{a b},{ }^{75}$ G. Della Ricca ${ }^{a b},{ }^{a 5}$ L. Lanceri ${ }^{a b},{ }^{75}$ L. Vitale ${ }^{a b}$, ${ }^{75}$ V. Azzolini, ${ }^{76}$ N. Lopez-March, ${ }^{76}$ F. Martinez-Vidal, ${ }^{76}$ D. A. Milanes, ${ }^{76}$ A. Oyanguren, ${ }^{76}$ J. Albert, ${ }^{77}$ Sw. Banerjee,,${ }^{77}$ B. Bhuyan, ${ }^{77}$ H. H. F. Choi, ${ }^{77}$ K. Hamano, ${ }^{77}$ R. Kowalewski, ${ }^{77}$ M. J. Lewczuk, ${ }^{77}$ I. M. Nugent, ${ }^{77}$ J. M. Roney, ${ }^{77}$ R. J. Sobie, ${ }^{77}$ T. J. Gershon, ${ }^{78}$ P. F. Harrison, ${ }^{78}$ J. Ilic, ${ }^{78}$ T. E. Latham, ${ }^{78}$ G. B. Mohanty, ${ }^{78}$ H. R. Band, ${ }^{79}$ X. Chen, ${ }^{79}$ S. Dasu, ${ }^{79}$ K. T. Flood, ${ }^{79}$ Y. Pan, ${ }^{79}$ M. Pierini, ${ }^{79}$ R. Prepost, ${ }^{79}$ C. O. Vuosalo, ${ }^{79}$ and S. L. Wu ${ }^{79}$
(The BABAR Collaboration)
${ }^{1}$ Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
${ }^{2}$ Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
${ }^{3}$ INFN Sezione di Bari ${ }^{a}$; Dipartmento di Fisica, Università di Bari ${ }^{b}$, I-70126 Bari, Italy
${ }^{4}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{6}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
${ }^{7}$ Ruhr Universiẗ̈t Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{8}$ University of Bristol, Bristol BS8 1TL, United Kingdom
${ }^{9}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{12}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{13}$ University of California at Los Angeles, Los Angeles, California 90024, USA
${ }^{14}$ University of California at Riverside, Riverside, California 92521, USA
${ }^{15}$ University of California at San Diego, La Jolla, California 92093, USA
${ }^{16}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
${ }^{17}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
${ }^{18}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{19}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{20}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{21}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{22}$ Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
${ }^{23}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
${ }^{24}$ Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
${ }^{25}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{26}$ INFN Sezione di Ferrara ${ }^{a}$; Dipartimento di Fisica, Università di Ferrara ${ }^{b}$, I-44100 Ferrara, Italy
${ }^{27}$ INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
${ }^{28}$ INFN Sezione di Genova ${ }^{a}$; Dipartimento di Fisica, Università di Genova ${ }^{b}$, I- 16146 Genova, Italy
${ }^{29}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{30}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{31}$ Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, D-12489 Berlin, Germany
${ }^{32}$ Imperial College London, London, SW7 2AZ, United Kingdom
${ }^{33}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{34}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{35}$ Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{36}$ Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d'Orsay, B. P. 34, F-91898 Orsay Cedex, France
${ }^{37}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{38}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{39}$ Queen Mary, University of London, London, E1 4NS, United Kingdom
${ }^{40}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
${ }^{41}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{42}$ Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany
${ }^{43}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{44}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{45}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{46}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
${ }^{47}$ McGill University, Montréal, Québec, Canada H3A $2 T 8$
${ }^{48}$ INFN Sezione di Milano ${ }^{a}$; Dipartimento di Fisica, Università di Milano ${ }^{b}$, I-20133 Milano, Italy
${ }^{49}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{50}$ Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
${ }^{51}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
${ }^{52}$ INFN Sezione di Napoli ${ }^{a}$; Dipartimento di Scienze Fisiche, Università di Napoli Federico $I I^{b}$, I-80126 Napoli, Italy
${ }^{53}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{54}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{55}$ Ohio State University, Columbus, Ohio 43210, USA ${ }^{56}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{57}$ INFN Sezione di Padova ${ }^{a}$; Dipartimento di Fisica, Università di Padova ${ }^{b}$, I-35131 Padova, Italy
${ }^{58}$ Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
${ }^{59}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{60}$ INFN Sezione di Perugia ${ }^{a}$; Dipartimento di Fisica, Università di Perugia ${ }^{b}$, I-06100 Perugia, Italy ${ }^{61}$ INFN Sezione di Pisa ${ }^{a}$; Dipartimento di Fisica,
Università di Pisa ${ }^{b}$; Scuola Normale Superiore di Pisa ${ }^{c}$, I-56127 Pisa, Italy
${ }^{62}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{63}$ INFN Sezione di Roma ${ }^{a}$; Dipartimento di Fisica, Università di Roma La Sapienza ${ }^{b}$, I-00185 Roma, Italy ${ }^{64}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{65}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{66}$ CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
${ }^{67}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{68}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
${ }^{69}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{70}$ State University of New York, Albany, New York 12222, USA
${ }^{71}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{72}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{73}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{7}$ INFN Sezione di Torino ${ }^{a}$; Dipartimento di Fisica Sperimentale, Università di Torino ${ }^{b}$, I-10125 Torino, Italy
${ }^{75}$ INFN Sezione di Trieste ${ }^{a}$; Dipartimento di Fisica, Università di Trieste ${ }^{b}$, I-34127 Trieste, Italy
${ }^{76}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
${ }^{77}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
${ }^{78}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{79}$ University of Wisconsin, Madison, Wisconsin 53706, USA
(Dated: July 16, 2008)

We present a study of B decays into the semileptonic final states containing charged and neutral charmed states of the $j=s_{q}+L=3 / 2$ doublet, $D_{1}(2420)$ and $D_{2}^{*}(2460)$, which decay via D wave transitions. The analysis is based on a data sample of $208 \mathrm{fb}^{-1}$ collected at the $\Upsilon(4 S)$ resonance with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. With a simultaneous fit

PACS numbers: $13.25 . \mathrm{Hw}, 12.15 . \mathrm{Hh}, 11.30 . \mathrm{Er}$

Higher excitations than the D^{*} play an important role in the understanding of semileptonic B decays. Precise knowledge of their properties is important to reduce the uncertainties on measurements of other semileptonic decays, and thus the determination of the CKM elements $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$. One fraction of the excited charmed states is given by the orbitally-excited $D^{* *}$ states. In the framework of Heavy Quark Symmetry, they form two doublets with $j_{q}^{P}=1 / 2^{-}$and $j_{q}^{P}=3 / 2^{-}$where j_{q}^{P} denotes the spin-parity of the light quark coupled to the orbital angular momentum. The doublet with $j_{q}^{P}=3 / 2^{-}$, namely the D_{1} and D_{2}^{*}, have to decay via D -wave to conserve parity and angular momentum and therefore are narrow [1]. In this paper we describe a simultaneous measurement of all B semileptonic decays to the two narrow orbitally-excited charmed states without explicit reconstruction of the rest of the event.

The CLEO collaboration has reported a measurement for the neutral D_{1} and an upper limit for the $D_{2}^{* 0}$ [2]. More recently Belle and $B A B A R$ have reported preliminary results using a technique in which one of the B in the process $\Upsilon(4 S) \rightarrow B \bar{B}$ is fully reconstructed [3].

The data used in this analysis were collected with the $B A B A R$ detector at the PEP-II storage ring. A total integrated luminosity of $208 \mathrm{fb}^{-1}$ has been recorded at a center of mass energy of the $\Upsilon(4 S)$.

The $B A B A R$ detector and event reconstruction is described in detail elsewhere [4]. A Monte Carlo (MC) simulation based on GEANT4 [5] is used to estimate signal efficiencies and to understand the background. The sample of simulated $B \bar{B}$ events is equivalent to approximately three times the data sample. In addition a dedicated simulation of signal events has been produced with samples of roughly five times the expected signal events contained in the data based on the ISGW2 model [6].
$D^{* *}$ decays are reconstructed in the decay chains $D^{* *} \rightarrow D^{*} \pi^{-}[7]$, and $D^{* *} \rightarrow D \pi^{-}$. The former is accessible to both narrow $D^{* *}$ states while the latter has no contribution from the D_{1}. Intermediate D^{*} states are reconstructed in $D^{*} \rightarrow D^{0} \pi$ and the D mesons are reconstructed exclusively in $D^{0} \rightarrow K^{-} \pi^{+}$and $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$. Finally $D^{* *}$ candidates are paired with reconstructed leptons and required to be consistent with the semileptonic decays $B \rightarrow D^{* *} \ell \nu$, as described in the following.

The signal event reconstruction proceeds as follows. First, events are selected which are likely to contain a semileptonic B decay. We require that there is a recon-
structed D candidate and at least one lepton in the event with a momentum greater than $800 \mathrm{MeV} / c$ in the center-of-mass (CM) frame [8]. Neutral D meson candidates are formed by $K^{-} \pi^{+}$combinations requiring the invariant mass to be consistent with the D^{0} mass within three sigma: $1.846<m(K \pi)<1.877 \mathrm{GeV} / c^{2}$. This asymmetric mass window is choosen to take into account resolution effects of the detector.
D^{0} candidates are combined with charged and neutral pions to form D^{*} candidates. For charged D^{*} the mass difference between the D^{*} and the D^{0} is required to be $144<m\left(D^{0} \pi^{+}\right)-m\left(D^{0}\right)<148 \mathrm{MeV} / c^{2}$. For neutral D^{*} the π^{0} is reconstructed from a photon pair with an invariant mass of $115<m_{\gamma \gamma}<150 \mathrm{MeV} / c^{2}$. Those photon pairs are re-fitted in a mass constrained fit to match the nominal mass of the π^{0}. The mass difference between the $D^{* 0}$ and the D^{0} is required to be $140<m\left(D^{0} \pi^{0}\right)-m\left(D^{0}\right)<144 \mathrm{MeV} / c^{2}$.
D^{+}candidates are formed from $K^{-} \pi^{+} \pi^{+}$combinations with an invariant mass of $1.854<m(K \pi \pi)<$ $1.884 \mathrm{GeV} / c^{2}$. The probability that the three tracks originate from a common vertex, P_{Vtx}, is required to be $P_{\mathrm{Vtx}}(K \pi \pi)>0.01$.

Candidates for D and D^{*} are combined with charged pions to form $D^{* *}$ candidates. These are combined with muons or electrons. The charge of the lepton is required to match the charge of the kaon from the D decay. Assuming that the reconstructed visible part of the decay ($Y=D^{* *} \ell$) is produced in a semileptonic B decay with a massless neutrino being the only missing particle, the decay kinematic is determined up to one angular quantity. The energy of the initial B is determined from the incident beam energies, hence conservation of fourmomentum leads to the relation

$$
\cos _{B Y}=-\frac{2 E_{B} E_{Y}-m_{B}^{2}-m_{Y}^{2}}{2\left|\vec{p}_{B}\right|\left|\vec{p}_{Y}\right|}
$$

where $E,|\vec{p}|$ and m are the energies, momenta and masses of the B and the Y respectively measured in the CMframe. If the assumption is correct, $\cos _{B Y}$ is the cosine of the angle between the directions of flight of the B and the Y. If the assumption made is not correct, this quantity does not represent a physical angle and therefore can take any value. Thus only events with values of $\left|\cos _{B Y}\right| \leq 1$ are selected.

In case a D^{*} is reconstructed in the decay chain a veto is applied against decays $B \rightarrow D^{*} \ell \nu$ by calculating the
variable $\cos _{B Y^{\prime}}$ which is defined as above but the Y system is redefined to contain only the D^{*} and the lepton: $Y^{\prime}=D^{*} \ell$. In this variable, signal events of the type $B \rightarrow D^{* *} \ell \nu$ tend to have values less than -1 . Background events, especially events with a true $B \rightarrow D^{*} \ell \nu$ decay, are rejected by the requirement $\cos _{B Y^{\prime}}<-1$.

For the decay modes $D^{* *} \rightarrow D \pi$ this veto cannot be applied. Instead, events reconstructed in this channel are rejected if the D^{0} can be paired with any charged pion to form a D^{*+} candidate as described above. In addition, if multiple $D^{* *} \ell$ candidates are present in the event, we retain the candidate with \tilde{m}_{ν}^{2} closest to zero, where \tilde{m}_{ν}^{2} is the neutrino mass squared, calculated under the approximation that the B momentum vanishes in the CM frame. The neutrino mass squared is given by $\tilde{m}_{\nu}^{2}=m_{B}^{2}+\left|\vec{p}_{D * * \ell}^{*}\right|^{2}-2 E_{B}^{*} E_{D * * \ell}^{*}$, where \vec{p}^{*} and E^{*} denote the momentum and energy of a particle in the CM frame.

Furthermore, $D^{* *} \ell$ candidates are selected only if the angle between the direction of flight for the $D^{* *}$ and the lepton exceeds 90 degrees in the CM frame. This criterion rejects combinations where the lepton comes from the decay of the other B. Finally, an event is also rejected if the pion emitted by the $D^{* *}$ and the lepton have a probability to originate from a common vertex of less than 0.001 . In about 2% of the events more than one $D^{* *} \ell$ candidate is selected and if so all of them enter the analysis.

Remaining background events are dominantly decays $B \rightarrow D^{(*)} \ell \nu$. Backgrounds from the process $e^{+} e^{-} \rightarrow q \bar{q}$ with $q=u, d, s, c$ are small compared to the $B \bar{B}$ background sources.

We perform a binned χ^{2} fit to the distributions of the mass difference $\Delta m=m\left(D^{* *}\right)-m(D)$ to extract the yield of events in the four different final states, specifically $B^{+/ 0} \rightarrow D^{*+/ 0} \pi^{-} \ell \nu$ with contributions from both D_{1} and D_{2}^{*}, and $B^{+/ 0} \rightarrow D^{+/ 0} \pi^{-} \ell \nu$ for D_{2}^{*} only. To disentangle the D_{1} and D_{2}^{*} contributions, we subdivide the $D^{*} \pi^{-} \ell \nu$ data into subsamples, based on the helicityangle ϑ_{h} of the D^{*}. This quantity is defined as the angle between the two pions emitted by the $D^{* *}$ and the D^{*} in the rest frame of the D^{*}. For a D^{*} produced by a D_{2}^{*} this angle must follow a distribution proportional to $\sin ^{2} \vartheta_{h}$. For D_{1} decays, the helicity-angle is distributed like $1+A_{D_{1}} \cos ^{2} \vartheta_{h}$, where $A_{D_{1}}$ is a parameter which depends on the initial polarization of the D_{1} and a possible contribution of the S -wave to the D_{1} decay. For unpolarized D_{1} decaying purely via D-wave, $A_{D_{1}}$ is predicted to be $A_{D_{1}}=3$. To make use of this, the spectra of the two decay chains including a D^{*} are split into four bins each of equal size in $\left|\cos \vartheta_{h}\right|$. This gives a total of ten mass-difference spectra which are fitted simultaneously.

The fit contains twelve parameters to describe the signals and 22 parameters for the backgrounds. Signal distributions in the mass-difference spectra are described by Breit-Wigner functions. For the signal the branching fractions of the $D^{* *}$ production for the charged and neu-
tral narrow states give four free parameters. The masses of the states are also fitted, but are constrained to be equal for charged and neutral states, giving two parameters. Four additional parameters arise from the effective widths of the $D^{* *}$ states, which represent a convolution of the intrinsic widths and detector resolution effects. The detector resolution contributes approximately $2-3 \mathrm{MeV} / c^{2}$ depending on the mode. For the decay of the D_{2}^{*}, namely the ratio $\mathcal{B}_{D / D^{*}}=\Gamma\left(D_{2}^{*} \rightarrow D \pi^{-}\right) / \Gamma\left(D_{2}^{*} \rightarrow\right.$ $D^{(*)} \pi^{-}$), measurements and calculations point to a ratio near two, but with uncertainties of about 30% [9]. We therefore allow this ratio to vary freely in the fit and furthermore the mixing parameter $A_{D_{1}}$ describing the distribution of the helicity-angle is a free parameter as well.

Backgrounds are modeled by polynomial functions of third order in the mass difference. For the modes $D^{* *} \rightarrow D^{*} \pi^{-}$the shape of the background events in Δm has been found to be independent of the helicity binning. Therefore only the normalisation of the background function is allowed to vary for the different spectra of a given reconstruction channel.

The selection efficiency is deduced from a fit to the simulation. This fit uses the same parameterization as the fit determining the branching fractions from data and is applied to the sum of the full background simulation and the simulation of only one signal, the D_{1} or the D_{2}^{*}. In the D^{*} modes the efficiencies have been found to be equal for D_{1} and D_{2}^{*}. For all four channels the efficiencies are: $\epsilon\left(D^{*+} \pi^{-}\right)=(6.89 \pm 0.12) \%$, $\epsilon\left(D^{* 0} \pi^{-}\right)=(5.34 \pm 0.12) \%, \epsilon\left(D^{+} \pi^{-}\right)=(12.88 \pm 0.96) \%$ and $\epsilon\left(D^{0} \pi^{-}\right)=(17.56 \pm 0.70) \%$, where the quoted uncertainties are the statistical uncertainties from the fit. For the decays including a D^{*} the efficiency is multiplied by the probability for a $D^{* *}$ to decay with a value of $\left|\cos \vartheta_{h}\right|$ falling into a given bin. This factor includes the theoretical distribution discussed above as well as corrections for the different detector acceptances in the four helicity bins of up to 10%. The total number of B mesons in the full data sample is derived as described in [10]. For the charged and neutral B mesons we assume $\Gamma(\Upsilon(4 S) \rightarrow$ $\left.B^{+} B^{-}\right) / \Gamma\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)=1.065 \pm 0.026[11]$.

In order to validate the fit procedure several crosschecks have been made. The analysis procedure is tested on statistically independent MC simulated data samples and was found to successfully reproduce the simulated signal parameters with a $\chi^{2} / n=12.66 / 12$, where n is the number of signal parameters. Consistent fit results were also obtained when the data sample was separated into subsamples representing specific data taking periods, or separated by electron on muon modes. Furthermore the fit is tested on data by restricting it to certain decay modes, using charged or neutral $D^{* *}$ only, or combining the helicity-bins.

The results of the fit are shown in figure 1. As expected the contribution of the D_{2}^{*} vanishes for large values of

TABLE I: Extracted yields for the four signal modes in the five relevant Δm-spectra.

mode	$\left\|\cos \vartheta_{h}\right\|$	D_{1}^{0}	$D_{2}^{* 0}$	D_{1}^{+}	D_{2}^{*+}
$D^{*} \pi^{+}$	$[0 \mid 0.25]$	344	273	212	152
$D^{*} \pi^{+}$	$[0.25 \mid$	$0.5]$	470	238	286
$D^{*} \pi^{+}$	$[0.5 \mid 0.75]$	699	170	439	83
$D^{*} \pi^{+}$	$[0.75 \mid$	$1]$	1027	67	668
$D \pi^{+}$		-	8414	-	3361

$\left|\cos \vartheta_{h}\right|$ while the contribution of the D_{1} is suppressed for $\cos \vartheta_{h}$ close to zero. The extracted yields are given in table I

All systematic uncertainties have been propagated through the fit procedure taking the correlations between the results into account. Efficiencies for reconstructing and selecting the particles of the final state are derived from Monte Carlo simulation. The simulation of the tracking and the π^{0}-reconstruction has been studied by comparing τ decays to one and three charged tracks and with or without a neutral pion. Uncertainties introduced by the particle identification for kaons and leptons are studied using control samples with high purities for the particles in question. The impact of the finite statistics of the simulated signal events is deduced from the fit-error of the efficiency-determination.

The branching fractions of the decays of the D^{*} and the D are taken from [9]. The uncertainty of the number of B mesons in the data set is determined as in [10]. In addition the uncertainty in the ratio of charged and neutral B mesons produced is taken into account.

Uncertainties introduced by the physics model which was used to simulate the MC have been addressed by re-doing the fit after fixing the functions describing the backgrounds to the shapes derived from the simulation. The deviations in the results are taken as a conservative estimate of the uncertainty. A possible influence of the background description has been tested by varying the parameterizations. The backgrounds are alternatively described by a square-root function multiplied by either polynomials or exponentials in Δm. Aa an additional crosscheck the fit was performed with one backgroundparameterization while using an aletrnative parameterization for the determination of the efficiencies.

Table II gives a summary on the various sources of systematic uncertainties and their impact on the results. Added in quadrature the total systematic uncertainties on the semileptonic branching fractions are $5-10 \%$ depending on the $D^{* *}$ type.

In summary, we have measured the four branching fractions of B mesons decaying semileptonically into narrow $D^{* *}$. Taking into account the unknown decay rates

TABLE II: Summary of systematic uncertainties of the determination of the semileptonic branching fractions.

Source	$\Delta \mathcal{B}\left(B \rightarrow D^{* *} \ell \nu\right) / \mathcal{B}\left(B \rightarrow D^{* *} \ell \nu\right)[\%]$			
	D_{1}^{0}	$D_{2}^{* 0}$	D_{1}^{+}	D_{2}^{*+}
tracking	1.76	1.39	1.03	1.14
π^{0}-efficiency	0.06	0.29	3.25	0.60
particle identification	2.61	2.75	3.11	1.60
MC statistics	1.80	5.61	2.50	3.32
helicity correction	0.65	0.14	0.17	0.31
number of B mesons	2.68	2.68	2.68	2.68
$\mathcal{B}\left(D^{*+} \rightarrow D^{0} \pi^{+}\right)$	0.76	0.19	0.04	0.10
$\mathcal{B}\left(D^{* 0} \rightarrow D^{0} \pi^{0}\right)$	0.11	0.45	5.07	0.93
$\mathcal{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$	1.89	0.42	1.78	2.03
$\mathcal{B}\left(D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}\right)$	0.07	2.67	0.24	0.54
bkg. parameterization	1.93	1.68	3.20	2.71
modeling	3.24	4.05	3.96	1.52
total systematic	6.23	8.68	9.45	6.06

of the $D^{* *}$ we find the product branching fractions

$$
\begin{aligned}
\mathcal{B}\left(B^{+}\right. & \left.\rightarrow D_{1}^{0} \ell^{+} \nu_{\ell}\right) \times \mathcal{B}\left(D_{1}^{0} \rightarrow D^{*+} \pi^{-}\right) \\
& =\left(2.97 \pm 0.17_{\text {stat }} \pm 0.18_{\text {syst }}\right) \times 10^{-3}, \\
\mathcal{B}\left(B^{+}\right. & \left.\rightarrow D_{2}^{* 0} \ell^{+} \nu_{\ell}\right) \times \mathcal{B}\left(D_{2}^{* 0} \rightarrow D^{(*)+} \pi^{-}\right) \\
& =\left(2.29 \pm 0.23_{\text {stat }} \pm 0.20_{\text {syst }}\right) \times 10^{-3}, \\
\mathcal{B}\left(B^{0}\right. & \left.\rightarrow D_{1}^{-} \ell^{+} \nu_{\ell}\right) \times \mathcal{B}\left(D_{1}^{-} \rightarrow D^{* 0} \pi^{-}\right) \\
& =\left(2.78 \pm 0.24_{\text {stat }} \pm 0.26_{\text {syst }}\right) \times 10^{-3}, \\
\mathcal{B}\left(B^{0}\right. & \left.\rightarrow D_{2}^{*-} \ell^{+} \nu_{\ell}\right) \times \mathcal{B}\left(D_{2}^{*-} \rightarrow D^{(*) 0} \pi^{-}\right) \\
& =\left(1.77 \pm 0.26_{\text {stat }} \pm 0.11_{\text {syst }}\right) \times 10^{-3}
\end{aligned}
$$

and $\Gamma\left(D_{2}^{*} \rightarrow D \pi^{-}\right) / \Gamma\left(D_{2}^{*} \rightarrow D^{(*)} \pi^{-}\right)=0.62 \pm 0.03_{s t a t} \pm$ $0.06_{\text {syst }}$. We observe all modes with significances greater than 5σ and achieve for the modes already observed a better precision than previous measurements $[2,3,12]$.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

* Deceased
${ }^{\dagger}$ Now at Temple University, Philadelphia, Pennsylvania 19122, USA
\ddagger Now at Tel Aviv University, Tel Aviv, 69978, Israel
§ Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy

FIG. 1: Δm-spectra for the selected data and the results of the fitted functions. The solid line represents the complete fit function, dotted $\left(D_{1}\right)$ and dashed (D_{2}^{*}) lines the signal parts and dash-dotted the background. (a) to (d) show the mode $D^{* * 0} \rightarrow D^{*+} \pi^{-}$with increasing values for $\left|\cos \vartheta_{h}\right|$, (e) the mode $D^{* * 0} \rightarrow D^{+} \pi^{-}$. (f) to (i) show the corresponding bins in $\left|\cos \vartheta_{h}\right|$ for the mode $D^{* *+} \rightarrow D^{* 0} \pi^{+}$and (k) the mode $D^{* *+} \rightarrow D^{0} \pi^{+}$.

『 Also with Università di Roma La Sapienza, I-00185 Roma, Italy
** Now at University of South Alabama, Mobile, Alabama 36688, USA
${ }^{\dagger \dagger}$ Also with Università di Sassari, Sassari, Italy
[1] N. Isgur, M. B. Wise, Phys. Rev. Lett. 66, 1130 (1991).
[2] The CLEO Collaboration, A. Anastassov et al., Phys. Rev. Lett. 80, 4127 (1998).
[3] The Belle Colaboration, D. Liventsev et al., hepex/0711.3252 (2007); Proceedings of the Rencontres de Moriond EW 2008.
[4] The BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002); The BABAR Collaboration, B. Aubert et al., Phys. Rev. D 66, 032003 (2002).
[5] The GEANT4 Collaboration, S. Agostinelli et al., Nucl. Instr. Methods Phys. Res., Sect. A 506, 250 (2003).
[6] N. Isgur, D. Scora, B. Grinstein and M. Wise, Phys. Rev. D 39, 799 (1989).
[7] Throughout this paper, whenever a mode is given, the charge conjugate is also implied.
[8] The 'center-of-mass frame' of a given event denotes the rest frame of the incoming $e^{+} e^{-}$-system.
[9] Particle Data Group, W.-M. Yao et al., Journal of Physics G 33, 1 (2006) and 2007 partial update for edition 2008 (http://pdg.lbl.gov).
[10] The BABAR Collaboration, B. Aubert et al., Phys. Rev. D 67, 032002 (2003).
[11] The Heavy Flavour Averaging Group, E. Barberio et al, hep-ex/0704.3575 and update for PDG2008.
[12] The ALEPH Collaboration, D. Buskulic et al., Z. Phys. C 73, 601 (1997); M. Dracos for the DELPHI Collaboration, Nucl. Phys. A 663, 655 (2000); The OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C 30, 467 (2003); The D \emptyset Collaboration, V.M. Abazov et al., Phys. Rev. Lett. 95, 171803 (2005).

