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Electromagnetic resonant cavities form the basis of many tests of Lorentz invariance involving
photons. The effects of some forms of Lorentz violation scale with cavity size. We investigate
possible signals of violations in the naturally occurring resonances formed in the Earth-ionosphere
cavity. Comparison with observed resonances places the first terrestrial constraints on coefficients
associated with dimension-three Lorentz-violating operators at the level of 10−20 GeV.

I. INTRODUCTION

Modern versions [1] of the classic Michelson-Morley [2]
and Kennedy-Thorndike [3] experiments are among the
most sensitive tests of Lorentz invariance, the symme-
try behind special relativity. Typically these experiments
search for minute changes in the resonant frequencies of
electromagnetic cavities. High quality factors allow for
precise tracking of the frequencies, giving extreme sensi-
tivities to possible deviations from perfect Lorentz sym-
metry. However, the effects of some forms of Lorentz
violation increase with wavelength. As a result, high sen-
sitivities may be achieved using very-low-frequency reso-
nances, such as those that naturally occur in the Earth-
ionosphere cavity, despite their relatively low quality fac-
tors.

In this work, we consider signals of Lorentz violation
that would appear in Schumann resonances, the lowest-
frequency standing waves that form in the atmosphere
[4, 5]. We obtain conservative bounds by comparison
with observations [6]. The Earth’s surface and ionosphere
form a cavity of immense size, leading to resonances with
very long wavelengths. The lowest-frequency resonances
have wavelengths that are comparable to the circumfer-
ence of the Earth and have frequencies as low as 8 Hz.

Violations of Lorentz invariance are described by the
Standard-Model Extension (SME) [7, 8]. The SME is
a theoretical framework that provides a basis for many
experimental and theoretical studies of Lorentz viola-
tion [9, 10], including those involving atoms [11, 12],
hadrons [13, 14], fermions [15–18], the Higgs boson [19],
gravity [20], and photons [1, 21–25]. In addition to
resonant-cavity experiments, searches for Lorentz viola-
tion in photons using the SME approach include astro-
physical searches for vacuum birefringence [22–25] and
dispersion [24, 25]. The goal of the SME is the charac-
terization of all violations of Lorentz symmetry that are
consistent with known physics using effective field the-
ory [26]. While motivated in part by the possibility of
spontaneous symmetry breaking in strings [27, 28], it en-
compassed violations with other origins [29–36]. Much
of the work on Lorentz violation has focused on the min-
imal SME, which includes operators of renormalizable
dimension in a flat spacetime. While nonrenormalizable
operators and curved spacetimes are of general interest
[8, 20, 23, 24, 30, 37], Schumann resonances are particu-

larly sensitive to the dimension-three CPT -odd Lorentz-
violating operators of the minimal-SME photon sector.

In cavities, Lorentz violation can introduce frequen-
cies that depend on the orientation of the cavity, sig-
nalling rotation violations, and dependence on velocity
resulting from boost violations [25]. The quantity de-
termining their sensitivity is the dimensionless fractional
frequency shift δν/ν. To date, cavity experiments have
focused primarily on one class of violations, namely the
dimension-four CPT -even Lorentz-violating operators of
the minimal SME. The coefficients associated with these
operators (k

(4)
F )αβγδ are dimensionless. Therefore, di-

mensional analysis suggests frequency shifts of the form

δν/ν ∼ (k
(4)
F )αβγδ, which implies little or no depen-

dence on frequency. Consequently, there is little advan-
tage to using low-frequency resonances. In contrast, the
coefficients associated with the dimension-three opera-

tors (k
(3)
AF )κ have mass-dimension one. Therefore, we

naively expect shifts in frequency that depend on the

ratio (k
(3)
AF )κ/ν. Given that ν ∼ 10−23 GeV for Schu-

mann resonances, we naively expect sensitivities on the

order of 10−23 GeV to k
(3)
AF coefficients, assuming at least

order-one sensitivity to δν/ν. While not as sensitive as
birefringence tests [24], the bounds obtained here repre-
sent the first terrestrial bounds on the dimension-three
operators, providing a valuable check on existing astro-
physical constraints.

The structural outline of this paper is as follows. Sec-
tion II provides some basic theory behind our calcula-
tion. In Sec. III we derive modified wave equations and
describe a numerical method of determining the effects
of Lorentz violations on Schumann resonances. The re-
sults of our calculation are discussed in Sec. IV. Unless
otherwise stated, we use the notation and conventions of
Refs. [7, 24].

II. BACKGROUND

In this section we discuss the theory behind the calcu-
lation of the Earth-ionosphere resonances in the presence
of dimension-three Lorentz violations. We begin by dis-
cussing the conductivity of the atmosphere and the Schu-
mann resonances in the usual case. We then review the
modified electrodynamics including the CPT -odd oper-
ators of the minimal SME.
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A. Conductivity profile

Resonances in the Earth-ionosphere cavity are excited
by a number of man-made and natural phenomena, light-
ning being a primary source. The surface of the Earth
forms the lower boundary and, in our calculation, is
treated as a perfect conductor. The ionosphere forms
a lossy upper boundary with a finite conductivity pro-
file that increases with altitude. The conductivity of
the lower atmosphere can be approximated by a “knee”-
model that separates into two layers with exponentially
increasing conductivity [38]:

σ(r) ≃







∞ r < R ,
σ0 exp r−r0

ξl
R < r < r0 ,

σ0 exp r−r0

ξu
r0 < r ,

(1)

where r is the distance for the center of the Earth, and
R ≃ 6400 km ≃ 3.2 × 1022 GeV−1 is the Earth radius.
The lower layer is dominated by positive and negative
ions. The upper layer approximates the bottom of the
ionosphere, which is dominated by free electrons. The
knee radius r0 is the boundary between the layers, and
σ0 is the conductivity at this transition. In units where
c = ~ = ǫ0 = µ0 = 1, we adopt values r0 = 1.009R,
ξl = 0.007R, ξu = 0.0005R, and σ0 = 1.3R−1 in the
numerical calculations that follow. This profile yields
frequencies and quality factors that closely match the
observed resonances in the Lorentz-invariant limit.

In the conventional case, both transverse-magnetic
(TM) and transverse-electric (TE) modes may be excited
in the cavity. However, TE modes oscillate in the radial
direction, implying wavelengths comparable to the height
of the ionosphere, yielding frequencies in the kHz range.
In contrast, the lowest-frequency TM modes vary little in
the radial direction but form standing waves that encircle
the Earth. As a result, the wavelengths are comparable
to the Earth’s circumference, yielding frequencies as low
as 8 Hz. Our goal is to understand the effects of Lorentz
violations on these low-frequency Schumann resonances.

B. Modified electrodynamics

The lagrangian governing electromagnetic waves, in-
cluding dimension-three Lorentz-violating operators, is
given by [7]

L = − 1
4FµνFµν + 1

2ǫκλµν(k
(3)
AF )κAλFµν , (2)

where Fµν = ∂µAν − ∂νAµ is the field strength. The re-
sulting theory preserves the usual gauge symmetry, but
violates CPT invariance. Lorentz and CPT violations
are controlled by the constant coefficients (k

(3)
AF )κ, which

include a pseudoscalar (k
(3)
AF )0 and pseudovector k

(3)
AF

.

The (k
(3)
AF )κ coefficients are assumed to be constant,

which leads to energy-momentum conservation. More
generally one can consider Lorentz-violating backgrounds

with spacetime variations. These types of violations are
particularly important when considering Lorentz viola-
tions in curved spacetimes [8, 20]. However, in scenarios
where violations originate in the moments shortly after
the big bang, it is likely that any variation has expanded,
leading to little fluctuation over experimentally relevant
time and length scales. Consequently, the idea presented

here probes (k
(3)
AF )κ in our local neighborhood. Astro-

physical tests rely on light that has propagated across
much of the visible universe. So they test Lorentz in-
variance over much larger scales and could be drastically

affected by variations in (k
(3)
AF )κ. Therefore, while current

bounds from astrophysical searches for birefringence cur-
rently lie at the 10−42 GeV level [24], terrestrial tests
provide an important complementary set of constraints.

The equations of motion resulting from Eq. (2) pro-
vide Lorentz-violating inhomogeneous Maxwell equa-
tions. We are primarily interested in harmonic solutions
and consider electric and magnetic fields of the form
E(t) = E(ω)e−iωt, B(t) = B(ω)e−iωt. Together with
the usual homogeneous equations, we arrive at a Lorentz-
violating electrodynamics with a modified Ampére law
and a conventional Faraday law:

∇ × B + iωE − 2 (k
(3)
AF )0 B + 2 k

(3)
AF

× E − σE = Js ,

∇ × E − iωB = 0 . (3)

Here we have included the usual source current and con-
ductivity terms. These conventional source terms result
if we assume usual coupling to matter. The source cur-
rent is not needed in determining the resonances but
could be used in modeling the effects of individual light-
ning strikes. The conductivity term is necessary to ob-
tain realistic frequencies and quality factors, which are
affected by the profile of the upper boundary and the
losses it introduces.

III. CALCULATION

Our goal is to calculate the resonant frequencies that
result from the modified Maxwell equations. We begin by
expanding into spherical harmonics and deriving modi-
fied wave equations. A numerical calculation is used to
estimate the resulting resonant frequencies. The results
are discussed in the following section.

A. Wave equations

We begin our search for resonances by first expressing
the modified Maxwell equations (3) in spherical coordi-
nates using the helicity-basis and identities discussed in
Appendix A. This involves writing the Maxwell equa-
tions in covariant form, then using relation (A5) to ex-
press them in terms of ∂/∂r and covariant angular-
momentum ladder operators J±. Dropping the source



3

current, the result is

0 = J+B− + J−B+ + (ω + iσ)rEr + 2ir(k
(3)
AF )0Br

+ 2r(k
(3)
AF )+E− − 2r(k

(3)
AF )−E+ , (4)

0 = ±∂
∂r rB± − J±Br + (ω + iσ)rE± + 2ir(k

(3)
AF )0B±

± 2r(k
(3)
AF )rE± ∓ 2r(k

(3)
AF )±Er , (5)

0 = J+E− + J−E+ − ωrBr , (6)

0 = ±∂
∂r rE± − J±Er − ωrB± , (7)

where Er, Br are the radial field components, and E±,
B± are negative/positive helicity components, as dis-

cussed in the appendix. The components of k
(3)
AF

are

defined by (k
(3)
AF )a = êa · k

(3)
AF

, where êa are the helicity
basis vectors. The components E± and B± are referred to
as spin-weighted functions with spin-weight-(±1), while
Er, Br have a weight of zero. Spin weight and helicity
are equivalent up to a sign. Eqs. (4) and (6) provide two
scalar relations, while (5) and (7) have a spin weight of
±1.

We can expand the field components in spin-weighted
spherical harmonics. These provide the generalization of
the familiar spherical harmonics to spin-weighted func-
tions. The expansion takes the form

Er =
∑

1
r E

(0E)
jm 0Yjm , (8)

E± =
∑

√

j(j+1)
2

1
r (∓E

(1E)
jm − iE

(1B)
jm )±1Yjm , (9)

Br =
∑

1
r B

(0B)
jm 0Yjm , (10)

B± =
∑

√

j(j+1)
2

1
r (∓B

(1B)
jm − iB

(1E)
jm )±1Yjm , (11)

where E
(0E)
jm , E

(1E)
jm , E

(1B)
jm , B

(0B)
jm , B

(1B)
jm , and B

(1E)
jm

are r-dependent field coefficients. They are associated
with total-angular-momentum eigenmodes and have E-
type parity, (−1)j , or B-type parity, (−1)j+1. The
√

j(j + 1)/2 and 1/r factors in the expansions are for
convenience.

Using these expansions, we can express the Maxwell

equations in terms of E
(0E)
jm , E

(1E)
jm , E

(1B)
jm , B

(0B)
jm , B

(1B)
jm ,

and B
(1E)
jm . First, using the ladder operators J∓ to

lower/raise the spin-(±1) relations (5) and (7) we ar-
rive at six scalar Maxwell equations. We then use the
spherical-harmonic expansions of the fields and the or-
thogonality relation (A3) to get relations between the
six expansion coefficients. Some algebra yields three E-

parity equations and three B-parity equations:

0 = j(j + 1)B
(1E)
jm − i(ω + iσ)rE

(0E)
jm + rK

(0E)
jm , (12)

0 = ∂
∂r B

(1E)
jm − i(ω + iσ)E

(1E)
jm + 1

j(j+1)K
(1E)
jm , (13)

0 = r ∂
∂r B

(1B)
jm − B

(0B)
jm + i(ω + iσ)rE

(1B)
jm

+ r
j(j+1)K

(1B)
jm , (14)

0 = j(j + 1)E
(1B)
jm + iωrB

(0B)
jm , (15)

0 = ∂
∂r E

(1B)
jm + iωB

(1B)
jm , (16)

0 = r ∂
∂r E

(1E)
jm − E

(0E)
jm − iωrB

(1E)
jm , (17)

where the Lorentz- and CPT -violating contributions
have been collected into the field combinations

K
(0E)
jm = 2(k

(3)
AF )0B

(0B)
jm + 2i|k

(3)
AF

|mE
(1E)
jm

+ 2|k
(3)
AF

|(j − 1)CjmE
(1B)
(j−1)m

− 2|k
(3)
AF

|(j + 2)C(j+1)mE
(1B)
(j+1)m , (18)

K
(1E)
jm = 2(k

(3)
AF )0j(j + 1)B

(1B)
jm

+ 2i|k
(3)
AF

|mE
(1E)
jm + 2i|k

(3)
AF

|mE
(0E)
jm

+ 2|k
(3)
AF

|(j2 + 2j − 1)CjmE
(1B)
(j−1)m

+ 2|k
(3)
AF

|(j2 − 2)C(j+1)mE
(1B)
(j+1)m , (19)

K
(1B)
jm = −2(k

(3)
AF )0j(j + 1)B

(1E)
jm − 2i|k

(3)
AF

|mE
(1B)
jm

− 2|k
(3)
AF

|(j + 1)CjmE
(0E)
(j−1)m

+ 2|k
(3)
AF

|jC(j+1)mE
(0E)
(j+1)m

+ 2|k
(3)
AF

|(j2 + 2j − 1)CjmE
(1E)
(j−1)m

+ 2|k
(3)
AF

|(j2 − 2)C(j+1)mE
(1E)
(j+1)m , (20)

where Cjm =
√

(j2 − m2)/(4j2 − 1). Here we take the
angular-momentum quantization axis along the direction

of k
(3)
AF

. Note that Eqs. (12)-(14) correspond to the mod-
ified spherical Ampére law and Eqs. (15)-(17) are the
usual Faraday law.

In the conventional case, where all coefficients for
Lorentz violation are zero, rotational symmetry implies
that resonances are eigenmodes of angular momentum
with definite j and m values. The symmetry also im-
plies degeneracy in m. So the different resonant frequen-
cies correspond to different values of the total-angular-

momentum index j. Setting K
(0E)
jm = K

(1E)
jm = K

(1B)
jm = 0

in Eqs. (12)-(17), we also note that the Lorentz-invariant
case splits according to parity. The B-parity resonances
correspond to the high-frequency TE modes, while low-
frequency TM Schumann resonances are the E-parity
modes.

Allowing for Lorentz violations, the new symmetries of
the system lead to several generic predictions. Rotational
symmetry is preserved in the event that we have only

isotropic violations associated with coefficient (k
(3)
AF )0.



4

This implies that the indexing and degeneracies of the
modes is the same, but the frequencies may change. In

contrast, the vector k
(3)
AF

breaks the usual degeneracy.
The system remains symmetric under rotations about

k
(3)
AF

. So we expect resonances that are eigenmodes of
these rotations with eigenvalues m, as usual. However,
these coefficients break spherical symmetry, implying the
index j is no longer associated with resonances. As a re-
sult, the usual 2j +1 degeneracies should break, yielding
modes with definite m but indefinite j. Consequently,
we expect two types of effects that would signify pos-
sible Lorentz violation. One is a split of degeneracies
leading to additional resonant frequencies. This results

from anisotropic violations. The other effect is a shift in
frequencies that may result from either anisotropic and
isotropic violations.

The above first-order differential equations can be re-
duced to second-order modified wave equations. We be-
gin by using the Faraday law, Eqs. (15)-(17), to elimi-
nate the magnetic field. We also use Eq. (12) to elimi-

nate the electric field component E
(0E)
jm in favor of E

(1E)
jm ,

E
(1B)
jm , and K

(0E)
jm . The result of this process is three cou-

pled equations relating the three sets of field components

E
(1E)
jm , E

(1B)
jm , and K

(0E)
jm :

0 = ∂2

∂r2 E
(1E)
jm +

p2
j

ω+iσ

(

∂
∂r

ω+iσ
p2

j

)

∂
∂rE

(1E)
jm + p2

jE
(1E)
jm +

ip2
j

ω+iσ
∂
∂r

1
rp2

j

K
(0E)
jm + 2i|k

(3)
AF

| mω
(ω+iσ)j(j+1)K

(0E)
jm

− 2(k
(3)
AF )0

p2
j

(ω+iσ)ω
∂
∂rE

(1B)
jm − 2|k

(3)
AF

|
p2

jm

(ω+iσ)j(j+1) E
(1E)
jm + 2|k

(3)
AF

| m
(ω+iσ)r

∂
∂r E

(1E)
jm

+ 2i|k
(3)
AF

|
p2

j (j2+2j−1)Cjm

(ω+iσ)j(j+1) E
(1B)
(j−1)m + 2i|k

(3)
AF

|
p2

j (j2−2)C(j+1)m

(ω+iσ)j(j+1) E
(1B)
(j+1)m , (21)

0 = ∂2

∂r2 E
(1B)
jm + p2

jE
(1B)
jm − 2|k

(3)
AF

| mω
j(j+1)E

(1B)
jm + 2(k

(3)
AF )0

(ω+iσ)ω
p2

j

∂
∂rE

(1E)
jm + 2i(k

(3)
AF )0

ω
p2

j
r
K

(0E)
jm

− 2i|k
(3)
AF

|
(j2+2j−1)Cjmω

j(j+1) E
(1E)
(j−1)m − 2i|k

(3)
AF

|
(j2−2)C(j+1)mω

j(j+1) E
(1E)
(j+1)m − 2i|k

(3)
AF

|
(j−1)Cjmω

p2
j−1r

∂
∂rE

(1E)
(j−1)m

+ 2|k
(3)
AF

|
Cjmω2

jp2
j−1

K
(0E)
(j−1)m + 2i|k

(3)
AF

|
(j+2)C(j+1)mω

p2
j+1r

∂
∂rE

(1E)
(j+1)m − 2|k

(3)
AF

|
C(j+1)mω2

(j+1)p2
j+1

K
(0E)
(j+1)m , (22)

0 = K
(0E)
jm − 2i(k

(3)
AF )0

j(j+1)
ωr E

(1B)
jm − 2i|k

(3)
AF

|mE
(1E)
jm

− 2|k
(3)
AF

|(j − 1)CjmE
(1B)
(j−1)m + 2|k

(3)
AF

|(j + 2)C(j+1)mE
(1B)
(j+1)m , (23)

where we define p2
j = ω(ω + iσ) − j(j + 1)/r2. Note

that we could use Eq. (23) to eliminate K
(0E)
jm . How-

ever, for simplicity, we treat K
(0E)
jm as a dynamical field

on equal footing with E
(1E)
jm and E

(1B)
jm . The field compo-

nents E
(1E)
jm and E

(1B)
jm correspond to the transverse part

of the electric field, which vanishes at the surfaces of a

perfect conductor. This implies K
(0E)
jm vanishes on the

surfaces as well. So we take E
(1E)
jm , E

(1B)
jm , and K

(0E)
jm as

independent fields that vanish at the boundaries of the
cavity.

B. Numerical frequencies

We calculate the resonant frequencies that result from
the modified electrodynamics by considering discrete
radii rn = R + δr(n+ 1

2 ), where n is an integer. Defining

discrete field coefficients at these points, E
(1E)
njm , E

(1B)
njm ,

and K
(0E)
njm , and using discrete derivatives, wave equa-

tions (21)-(23) can be written in the form of an infinite-
dimensional matrix equation. Discrete resonances cor-

respond to frequencies where nontrivial field configura-
tions exist. These can be estimated by truncating the
matrix at finite index values and searching for ω where
the truncated matrix is singular. These ω are complex
in general. The real parts give the resonant frequencies
ν = Re ω/(2π), while the ratios of the real and imaginary
parts determine the quality factors Q = −Reω/Imω/2
of the modes.

In the event that (k
(3)
AF )κ = 0, Eqs. (21)-(23) reduce

to two wave equations, one for B modes and one for the

Schumann E modes. However, nonzero (k
(3)
AF )κ coeffi-

cients mix the two parities, and resonances will no longer
possess definite E or B parity. We also note that no mix-
ing of fields with different m values occurs, but mixing

across j values results from the vector k
(3)
AF

, as expected.
As a result, all resonances have definite m values, and m
may be fixed in the calculation.

To determine the resonances, we take 100 different
r values, n = 0, . . . 99, uniformly spaced between R
and 1.01R. This corresponds to a penetration of about
0.001R ≃ 6.4 km into the highly conductive ionosphere.
For fixed m, we create a matrix including terms corre-
sponding to these n values and the ten lowest j values
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)0| = 2 × 10−21 GeV

|(k
(3)
AF

)0| = 3 × 10−21 GeV

|(k
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FIG. 1: Calculated resonant frequencies and quality factors

for three different values of |(k
(3)
AF

)0|. Circles represent the res-
onances. The Lorentz-invariant limit is shown with × symbols
for comparison. The shaded regions indicate the correspond-
ing widths at half maximum for the three lowest resonances
in the Lorentz-invariant case.

that are relevant, j ≥ |m|. The result is a square matrix
with dimension 100 × 10 × 3. We use a row-reduction
method to determine its determinant for different values
of ω and search for roots.

IV. RESULTS

While any combination of coefficients for Lorentz vi-
olation is possible, for simplicity, we next consider the

effects of (k
(3)
AF )0 and |k

(3)
AF

| separately. We first consider

a nonzero (k
(3)
AF )0 coefficient. Figure 1 shows the three

lowest-frequency resonances for three values of |(k
(3)
AF )0|.

The three resonances shown correspond to j = 1, 2, 3
and are degenerate in m. The results are independent

of the sign of (k
(3)
AF )0 due to the symmetry of this case.

The figure also shows the calculated resonant frequency
and Q factor for the Lorentz-invariant limit. These
are in good agreement with the observed resonances of
(ν, Q) = (7.8 Hz, 4.0), (14.1 Hz, 4.5), (20.3 Hz, 5.0) [6].

From the figure we see that values of (k
(3)
AF )0 on the

order of 10−21 GeV significantly affect both the resonant
frequencies and Q factors. In particular, values of 4 ×
10−21 GeV drastically alter all three modes. We therefore

adopt a conservative limit of |(k
(3)
AF )T | < 4×10−21 on the

time-like part of (k
(3)
AF )κ in the standard Sun-center frame

described in Ref. [25]. This translates to a bound of

|k
(3)
(V )00| < 14 × 10−21 (24)

on the spherical coefficient from Ref. [23].

5 10 15 20 25

5
10
15
20

5 10 15 20 25

5
10
15
20

5 10 15 20 25

5
10
15
20

5 10 15 20 25

5
10
15
20

5 10 15 20 25

5
10
15
20

5 10 15 20 25

5
10
15
20

ν (Hz)

Q
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| = 4 × 10−21 GeV

|k
(3)
AF

| = 6 × 10−21 GeV

|k
(3)
AF

| = 8 × 10−21 GeV

FIG. 2: Resonant frequencies and Q factors for three values

of |k
(3)
AF

|. The |k
(3)
AF

| = 0 case (× symbols) is shown for
comparison. The shaded regions indicate the corresponding
widths at half maximum for the three lowest resonances in
the Lorentz-invariant case. Each plot includes resonances for
index values m = 0 (stars), m = ±1 (filled/empty circles),
m = ±2 (filled/empty squares), and m = ±3 (filled/empty
triangles).

Note that the above bound is about two orders of mag-
nitude larger than the naive prediction. This can be un-

derstood from the fact that the (k
(3)
AF )κ coefficients mix

E- and B-parity modes. The B-parity resonances have
frequencies that are at much higher frequencies. This
leads to a seesaw effect in the Maxwell equations that
suppresses perturbations in the resonances. As a result,
relatively large mixing in the wave equations must be
present for significant changes to manifest in the low-
frequency modes.

Small changes to the conductivity profile can lead to
large changes in the resonances, implying that our confi-

dence in the bound on (k
(3)
AF )T is somewhat weakened by

our knowledge of the atmospheric conductivity, which is
a complicated and variable system. Much cleaner bounds

can be placed on the pseudovector part k
(3)
AF

since it
leads to a breakdown of the usual 2j + 1 degeneracy
among modes with identical j eigenvalues. These bounds
too are complicated by imperfections in our conductivity
model, including the missing day-side/night-side and po-
lar asymmetries that are present in the real atmosphere
[5]. These conventional anisotropies can also break the
degeneracies, but they would only add to the effects we
are bounding. We therefore neglect them in our analy-
sis. However, these features could be significant in more
detailed studies involving field configurations. For exam-
ple, local fields may experience variability that includes
daily and annual fluctuations from conventional physics.
Extracting a sidereal dependence caused by the rotation

of the Earth with respect to the fixed k
(3)
AF

vector might
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be possible but is beyond the scope of this work.
Figure 2 shows the resonances for three different val-

ues of |k
(3)
AF

|. We notice shifts in the frequencies and Q
factors as well as the expected 2j +1 splitting of the res-

onances. In particular, values of |k
(3)
AF

| = 8× 10−21 GeV
lead to new resonances separated by frequency intervals
comparable to the resonance widths. These multiple res-
onances would be evident in the data if they existed.

Therefore, we take |k
(3)
AF

| < 8 × 10−21 GeV as a conser-
vative bound. The relation to the spherical coefficients

is given by |k
(3)
AF

| = 1√
4π

(

6|k
(3)
(V )11|

2 + 3|k
(3)
(V )10|

2
)1/2

[24].

So our bound leads to two constraints on spherical coef-
ficients for Lorentz violation of

|k
(3)
(V )11| < 12 × 10−21 GeV,

|k
(3)
(V )10| < 16 × 10−21 GeV. (25)

These completely bound the vector (j = 1) dimension-
three Lorentz-violating operators. Again, these con-
straints are less stringent than the naive estimate.

V. DISCUSSION

In this work, we used Schumann resonances in the
Earth-ionosphere cavity to place bounds on the order of
10−20 GeV on CPT -odd j = 1 coefficients of the min-
imal SME. Similar bounds are places on j = 0 scalar
coefficients assuming the actual conductivity profile of
the atmosphere is not significantly different from our
model profile. These bounds constitute the first terres-
trial bounds on dimension-three Lorentz-violating oper-
ators.

While not as sensitive as astrophysical searches for
vacuum birefringence, the techniques used in this work
test Lorentz invariance in our local neighborhood, giving
a bound on coefficients over solar-system length scales.
In contrast, astrophysical tests probe Lorentz violation
over cosmological scales and may be obfuscated by space-
time variations or domains in the Lorentz-violating back-
grounds. So local tests play an important role in our
search for new physics.

Laboratory-based experiments may also provide local
tests of Lorentz invariance. Current cavity experiments
utilize high Q factors that allow for sensitivities to δν/ν
on the order of parts in 1015 or better [1]. This suggests
improved bounds may be possible in laboratory experi-

ments. A rough estimate yields sensitives to (k
(3)
AF )κ from

about 10−25 GeV in optical cavities to around 10−30 GeV
in lower-frequency microwave cavities.

Future studies involving Schumann resonances may be
able to improve on the above bounds. Precise tracking of
the resonances may allow for sidereal searches that would

indicate rotation violations from k
(3)
AF

. Also, boost vio-

lations from (k
(3)
AF )κ coefficients can lead to annual de-

pendences that may be discernible. Regardless, the con-

straints obtained here demonstrate the potential of res-
onator experiments as tests of dimension-three Lorentz
violations in the atmosphere and in the laboratory.

APPENDIX A: SPIN WEIGHT

The problem addressed in this work is most naturally
solved in spherical coordinates. Here we use a helicity-
based system and covariant-angular-momentum opera-
tors. In this appendix, we summarize some the key iden-
tities used in the calculation of the modified wave equa-
tions. A fuller discussion of these methods will appear
elsewhere [39]. The technique is based on a decompo-
sition into total angular momentum J and helicity. A
type of tensor spherical harmonics called spin-weighted
harmonics sYjm [40] provide orthonormal sets of eigen-
functions of these operators. The index s labels the spin
weight, which up to a sign is equivalent to helicity.

The method starts by defining helicity basis vectors,
ê± = ê

∓ = 1√
2
(êθ ± iêφ), êr = ê

r, where êr = x/|x| is

the radial unit vector, and êθ and êφ are unit vectors as-
sociated with the usual coordinate angles θ and φ. The
helicity operator Jr = êr · J generates local rotations
about the radial direction. In the helicity basis, compo-
nents of 3-dimensional tensors have definite spin weight,
which can be determined by counting the number of +
and − index values. For example, consider a tensor com-
ponent T++ = T−− = ê+ · T · ê+. It is a spin-weight-2
function and can be expanded into the complete set of
spin-weight-2 spherical harmonics 2Yjm. Another exam-
ple is the tensor component T−r = ê− · T · êr, which has
a spin weight of −1. In the present context, the elec-
tric and magnetic fields have spin-weight-0 components
Er = êr · E, Br = êr · B and components E± = ê± · E,
B± = ê± · B, which have a spin weight of ±1.

In general, harmonics of a given weight satisfy comple-
tion and orthogonality relations,

∑

jm

sY
∗
jm(Ω) sYjm(Ω′) = δ(Ω − Ω′) , (A1)

∫

sY
∗
jm(Ω) sYj′m′(Ω) dΩ = δjj′δmm′ . (A2)

More generally, they obey

s1Yj1m1s2Yj2m2 =
∑

s3j3m3

√

(2j1+1)(2j2+1)
4π(2j3+1)

× 〈j1j2(−s1)(−s2)|j3(−s3)〉

× 〈j1j2m1m2|j3m3〉 s3Yj3m3 , (A3)

where 〈j1j2m1m2|j3m3〉 are Clebsch-Gordan coefficients.
Note that orthonormality and completion do not extend
across harmonics of different spin weight.

The spin-weighted harmonics can be generated for
the familiar spin-weight-zero harmonics 0Yjm = Yjm

using covariant-angular-momentum operators Ja =
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−iǫabcx
b∇c + Sa, where ∇a represent covariant deriva-

tives and Sa are covariant spin operators. The spin op-
erators act on tensors in a manner similar to a connec-
tion. For example, operating on a tensor T b

c, we get
SaT b

c = Sb
adT

d
c − Sd

acT
b
d, where Sc

ab = iεc
ab. The

totally antisymmetric tensor has nonzero components
ε+r− = −ε+r− = i in the helicity basis. In general, the
components J± = ê± ·J raise/lower the spin weight of a
function. Specifically acting on the spherical harmonics,
we get the ladder relations

J± sYjm = −
√

1
2

(

j(j + 1) − s(s ± 1)
)

s±1Yjm . (A4)

Successive operations generate arbitrary sYjm in terms

of 0Yjm.

Finally, there is a useful relationship between the co-
variant derivatives and the angular-momentum operators
in the helicity basis:

∇r = ∂/∂r ,

∇± = ±(J± − S±)/r . (A5)

These identities help in the reduction of differential ten-
sor equations into radial and angular parts. For ex-
ample, the divergence of vector V a becomes ∇aV a =
(

∂
∂r + 2

r

)

Vr + 1
r (J+V− − J−V+), using the properties of

the spin operator.
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(1997); Phys. Rev. D 58, 116002 (1998).
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