Print

Print


Commit in lcsim-contrib/src/main/java/org/lcsim/contrib/sATLAS on MAIN
TrackAnalysisDriver.java+648added 1.1
TrackReconstructionDriver.java+48added 1.1
TrackerHitDriver_sATLAS.java+184added 1.1
sATLASDigiDriver.java+19added 1.1
+899
4 added files
Create directory with "standard" version of sATLAS tracking simulation code

lcsim-contrib/src/main/java/org/lcsim/contrib/sATLAS
TrackAnalysisDriver.java added at 1.1
diff -N TrackAnalysisDriver.java
--- /dev/null	1 Jan 1970 00:00:00 -0000
+++ TrackAnalysisDriver.java	28 Apr 2009 21:18:08 -0000	1.1
@@ -0,0 +1,648 @@
+/*
+ * To change this template, choose Tools | Templates
+ * and open the template in the editor.
+ */
+package org.lcsim.contrib.sATLAS;
+
+import org.lcsim.contrib.mgraham.sATLASDigi.*;
+import hep.aida.IHistogram1D;
+import hep.aida.IHistogramFactory;
+import hep.physics.matrix.SymmetricMatrix;
+import hep.physics.vec.BasicHep3Vector;
+import hep.physics.vec.Hep3Vector;
+
+import hep.physics.vec.VecOp;
+import java.util.ArrayList;
+import java.util.List;
+
+import java.util.Set;
+//import org.lcsim.contrib.Partridge.TrackingTest.FindableTrack.Ignore;
+//import org.lcsim.contrib.Partridge.TrackingTest.TrackAnalysis;
+import org.lcsim.contrib.mgraham.sATLASDigi.FindableTrack.Ignore;
+import org.lcsim.event.EventHeader;
+import org.lcsim.event.LCRelation;
+import org.lcsim.event.MCParticle;
+import org.lcsim.event.RelationalTable;
+import org.lcsim.event.Track;
+import org.lcsim.event.RawTrackerHit;
+import org.lcsim.event.SimTrackerHit;
+import org.lcsim.event.base.BaseRelationalTable;
+import org.lcsim.fit.helicaltrack.HelicalTrackCross;
+import org.lcsim.fit.helicaltrack.HelicalTrackFit;
+import org.lcsim.fit.helicaltrack.HelicalTrackHit;
+import org.lcsim.fit.helicaltrack.HelicalTrackStrip;
+import org.lcsim.fit.helicaltrack.HelixParamCalculator;
+import org.lcsim.fit.helicaltrack.HelixUtils;
+import org.lcsim.fit.helicaltrack.MultipleScatter;
+import org.lcsim.fit.helicaltrack.TrackDirection;
+import org.lcsim.recon.tracking.seedtracker.SeedCandidate;
+import org.lcsim.recon.tracking.seedtracker.SeedStrategy;
+import org.lcsim.recon.tracking.seedtracker.SeedTrack;
+import org.lcsim.recon.tracking.seedtracker.StrategyXMLUtils;
+import org.lcsim.util.Driver;
+import org.lcsim.util.aida.AIDA;
+
+/**
+ *
+ * @author partridge
+ */
+public class TrackAnalysisDriver extends Driver {
+
+    private AIDA aida = AIDA.defaultInstance();
+    private IHistogram1D pTeff1;
+    private IHistogram1D pTeff2;
+    private IHistogram1D thetaeff;
+    private IHistogram1D ctheff;
+    private IHistogram1D etaeff;
+    private IHistogram1D etafake;
+    private IHistogram1D d0eff1;
+    private IHistogram1D d0eff2;
+    private IHistogram1D z0eff1;
+    private IHistogram1D z0eff2;
+    private IHistogram1D fakes;
+    private IHistogram1D nfakes;
+    int trk_count = 0;
+    int nevt = 0;
+
+    public TrackAnalysisDriver() {
+
+        //  Define the efficiency histograms
+        IHistogramFactory hf = aida.histogramFactory();
+        pTeff1 = hf.createHistogram1D("Efficiency vs pT", "", 100, 0., 5., "type=efficiency");
+        pTeff2 = hf.createHistogram1D("Efficiency vs pT full", "", 100, 0., 50., "type=efficiency");
+        thetaeff = hf.createHistogram1D("Efficiency vs theta", "", 72, 0., 180., "type=efficiency");
+        ctheff = hf.createHistogram1D("Efficiency vs cos(theta)", "", 50, -1., 1., "type=efficiency");
+        etaeff = hf.createHistogram1D("Efficiency vs eta", "", 50, -2., 2., "type=efficiency");
+        etafake = hf.createHistogram1D("Fake rate vs eta", "", 50, -2., 2., "type=efficiency");
+        d0eff1 = hf.createHistogram1D("Efficiency vs d0", "", 50, -5., 5., "type=efficiency");
+        d0eff2 = hf.createHistogram1D("Efficiency vs d0 full", "", 24, -12., 12., "type=efficiency");
+        z0eff1 = hf.createHistogram1D("Efficiency vs z0", "", 50, -5., 5., "type=efficiency");
+        z0eff2 = hf.createHistogram1D("Efficiency vs z0 full", "", 24, -12., 12., "type=efficiency");
+        fakes = hf.createHistogram1D("Number of mis-matched hits (unnormalized)", "", 10, 0., 10.);
+        nfakes = hf.createHistogram1D("Number of mis-matched hits (normalized)", "", 10, 0., 10.);
+
+    }
+
+    @Override
+    public void process(EventHeader event) {
+
+        //  Increment the event counter
+        nevt++;
+
+        //  Get the magnetic field
+        Hep3Vector IP = new BasicHep3Vector(0., 0., 0.);
+        double bfield = event.getDetector().getFieldMap().getField(IP).z();
+// dump SThit information
+
+        String[] input_hit_collections = {"VtxBarrHits", "VtxEndcapHits", "SCTShortBarrHits", "SCTLongBarrHits", "SCTShortEndcapHits", "SCTLongEndcapHits"};
+        for (String input : input_hit_collections) {
+            List<SimTrackerHit> sthits = event.getSimTrackerHits(input);
+            int[] nhits = {0, 0, 0, 0, 0, 0};
+            for (SimTrackerHit st : sthits) {
+                String detector = st.getDetectorElement().getName();
+                int layer = st.getLayerNumber();
+                double[] hp = st.getPoint();
+                Hep3Vector hitPos = new BasicHep3Vector(hp[0], hp[1], hp[2]);
+                double r = Math.sqrt(hp[0] * hp[0] + hp[1] * hp[1]);
+                double theta = Math.atan2(r, hp[2]);
+//                double eta = -Math.log(r / (2 * Math.abs(hp[2])));
+                double eta = -Math.log(Math.tan(theta / 2));
+                double phi = Math.atan2(hp[1], hp[0]);
+//                System.out.println("r= " + r + "  theta = "+theta+"  eta = " + eta+ " phi=" + phi);
+                nhits[layer]++;
+                aida.cloud1D(input + " layer " + layer + " STHit eta").fill(eta);
+                aida.cloud1D(input + " layer " + layer + " STHit phi").fill(phi);
+                aida.cloud2D(input + " layer " + layer + " STHit phi vs eta").fill(eta, phi);
+                aida.histogram2D(input + " layer " + layer + " STHit phi vs eta occupancy", 100, -2.5, 2.5, 100, -3.2, 3.2).fill(eta, phi);
+            }
+            int i = 0;
+            while (i < 6) {
+                if (nhits[i] > 0) {
+                    aida.cloud1D(input + "layer " + i + " number of ST hits").fill(nhits[i]);
+                }
+                i++;
+            }
+        }
+  
+     List<HelicalTrackHit> hthits = event.get(HelicalTrackHit.class, "HelicalTrackHits");
+        for (HelicalTrackHit HelTrHit : hthits) {
+        }
+
+        //  Get the list of strategies being used
+//        String sfile = "autogen_ttbar_sid02_vs.xml";
+//        List<SeedStrategy> slist = StrategyXMLUtils.getStrategyListFromResource(
+//                StrategyXMLUtils.getDefaultStrategiesPrefix() + sfile);
+
+        String sfile = StrategyXMLUtils.getDefaultStrategiesPrefix() + "sATLASBarrel-SM08.xml";
+        List<SeedStrategy> slist = StrategyXMLUtils.getStrategyListFromResource(sfile);
+
+        //  Find the minimum pT among the strategies
+        double ptCut = 9999.;
+        for (SeedStrategy s : slist) {
+            if (s.getMinPT() < ptCut) {
+                ptCut = s.getMinPT();
+            }
+        }
+
+        //  Create a relational table that maps TrackerHits to MCParticles
+        RelationalTable hittomc = new BaseRelationalTable(RelationalTable.Mode.MANY_TO_MANY, RelationalTable.Weighting.UNWEIGHTED);
+        List<LCRelation> mcrelations = event.get(LCRelation.class, "HelicalTrackMCRelations");
+        for (LCRelation relation : mcrelations) {
+            hittomc.add(relation.getFrom(), relation.getTo());
+        }
+
+        //  Instantiate the class that determines if a track is "findable"
+        FindableTrack findable = new FindableTrack(event);
+
+        //  Create a map between tracks and the associated MCParticle
+        List<Track> tracklist = event.getTracks();
+        RelationalTable trktomc = new BaseRelationalTable(RelationalTable.Mode.MANY_TO_MANY, RelationalTable.Weighting.UNWEIGHTED);
+
+        //  Analyze the tracks in the event
+        for (Track track : tracklist) {
+
+            //  Calculate the track pT and cos(theta)
+            double px = track.getPX();
+            double py = track.getPY();
+            double pz = track.getPZ();
+            double pt = Math.sqrt(px * px + py * py);
+            double cth = pz / Math.sqrt(pt * pt + pz * pz);
+            double th = Math.atan2(pt, pz);
+            double eta = -Math.log(Math.tan(th / 2));
+            double d0 = track.getTrackParameter(HelicalTrackFit.dcaIndex);
+            double z0 = track.getTrackParameter(HelicalTrackFit.z0Index);
+
+            SeedTrack st = (SeedTrack) track;
+
+            SeedCandidate seed = st.getSeedCandidate();
+
+            HelicalTrackFit helixTrack = seed.getHelix();
+            double[] chisq = helixTrack.chisq();
+            double nhchisq = helixTrack.nhchisq();
+            aida.cloud1D("Track Chi2-Circle Fit").fill(chisq[0]);
+            aida.cloud1D("Track Chi2-RZ Fit").fill(chisq[1]);
+            aida.cloud1D("NH Track Chi2").fill(nhchisq);
+            if (nhchisq != 0) {
+                aida.cloud1D("NH!=0  Track Chi2-Circle Fit").fill(chisq[0]);
+                aida.cloud1D("NH!=0  Track Chi2-RZ Fit").fill(chisq[1]);
+
+            }
+            List<HelicalTrackHit> hitlist = seed.getHits();
+            for (HelicalTrackHit hit : hitlist) {
+                int nhits = hit.getRawHits().size();
+                aida.cloud1D(hit.Detector() + " nHits").fill(nhits);
+                Hep3Vector HTHPos = hit.getCorrectedPosition();
+                double rHit = Math.sqrt(HTHPos.x() * HTHPos.x() + HTHPos.y() * HTHPos.y());
+                double zHit = HTHPos.z();
+                double etaHit = -Math.log(Math.tan(Math.atan2(rHit, zHit) / 2));
+//                System.out.println("Looping over hit in " + hit.Detector());
+                double hitchisq = hit.chisq();
+                double s = helixTrack.PathMap().get(hit);
+                Hep3Vector posonhelix = HelixUtils.PointOnHelix(helixTrack, s);
+
+                if (hit instanceof HelicalTrackCross) {
+                    HelicalTrackCross cross = (HelicalTrackCross) hit;
+                    TrackDirection trkdir = HelixUtils.CalculateTrackDirection(helixTrack, s);
+                    cross.setTrackDirection(trkdir, helixTrack.covariance());
+                    List<HelicalTrackStrip> clusterlist = cross.getStrips();
+                    double du_stereo = 0;
+                    double du_axial = 0;
+                    for (HelicalTrackStrip cluster : clusterlist) {
+                        int nstrips = cluster.rawhits().size();
+                        aida.cloud1D(hit.Detector() + " nStrips-per-layer").fill(nstrips);
+                        Hep3Vector corigin = cluster.origin();
+                        Hep3Vector u = cluster.u();
+                        List<RawTrackerHit> rawhits = cluster.rawhits();
+                        double umc = -999999;
+                        double stenergy = -999999;
+                        String stripdir = "axial";
+                        double umeas = cluster.umeas();
+                        double charge = cluster.dEdx();
+                        double layer = cluster.layer();
+                        for (RawTrackerHit rhit : rawhits) {
+                            String deName = rhit.getDetectorElement().getName();
+                            if (deName.contains("sensor1")) {
+                                stripdir = "stereo";
+                            }
+                            //                           System.out.println("Layer number  " + rhit.getLayerNumber() + "  " + deName);
+                            List<SimTrackerHit> sthits = rhit.getSimTrackerHits();
+                            int nsthits = sthits.size();
+                            aida.cloud1D(hit.Detector() + " associated ST hits").fill(nsthits);
+                            aida.cloud1D(hit.Detector() + " layer" + stripdir + " associated ST hits").fill(nsthits);
+                            if (nsthits == 1) {
+                                double[] sthitD = sthits.get(0).getPoint();
+                                BasicHep3Vector sthit = new BasicHep3Vector(sthitD);
+                                stenergy = sthits.get(0).getdEdx();
+                                Hep3Vector vdiff = VecOp.sub(sthit, corigin);
+                                umc = VecOp.dot(vdiff, u);
+                            }
+                        }
+
+
+                        aida.cloud2D(hit.Detector() + "clusterSize vs eta").fill(etaHit, nstrips);
+                        //                        System.out.println("filling...");
+                        if (umc != -999999) {
+                            aida.cloud2D(hit.Detector() + "cluster vs STHit dedx").fill(stenergy, charge);
+                            aida.cloud2D(hit.Detector() + "cluster dedx vs delte(u)").fill(umeas - umc, charge);
+                            if (stripdir.contains("stereo")) {
+                                du_stereo = umeas - umc;
+                            }
+                            if (stripdir.contains("axial")) {
+                                du_axial = umeas - umc;
+                            }
+                            aida.cloud1D(hit.Detector() + "layer=" + stripdir + " delta(u)").fill(umeas - umc);
+                            aida.cloud1D(hit.Detector() + " delta(u)").fill(umeas - umc);
+                            if (nstrips == 1) {
+                                aida.cloud1D(hit.Detector() + "layer=" + stripdir + " delta(u)--1 strip").fill(umeas - umc);
+                                aida.cloud1D(hit.Detector() + " delta(u)--1 strip").fill(umeas - umc);
+                            }
+                            if (nstrips == 2) {
+                                aida.cloud1D(hit.Detector() + "layer=" + stripdir + " delta(u)--2 strip").fill(umeas - umc);
+                                aida.cloud1D(hit.Detector() + " delta(u)--2 strip").fill(umeas - umc);
+                            }
+                            if (nstrips == 3) {
+                                aida.cloud1D(hit.Detector() + "layer=" + stripdir + " delta(u)--3 strip").fill(umeas - umc);
+                                aida.cloud1D(hit.Detector() + " delta(u)--3 strip").fill(umeas - umc);
+                            }
+                        }
+
+                    }
+                    aida.cloud2D(hit.Detector() + " delta(u) stereo v axial").fill(du_stereo, du_axial);
+                }
+                MultipleScatter ms = seed.getMSMap().get(hit);
+                double msphi = ms.drphi();
+                double msz = ms.dz();
+                Hep3Vector hitpos = hit.getCorrectedPosition();
+                SymmetricMatrix cov = hit.getCorrectedCovMatrix();
+//                double rHit = getr(hitpos.x(), hitpos.y());
+//                double rHel = getr(posonhelix.x(), posonhelix.y());
+//                double phiHet = getphi(hitpos.x(), hitpos.y());
+//                double phiHel = getr(posonhelix.x(), posonhelix.y());
+                double dxdy = Math.sqrt(Math.pow(hitpos.x() - posonhelix.x(), 2) + Math.pow(hitpos.y() - posonhelix.y(), 2));
+                double dxdyErr = getdxdyErr(hitpos, posonhelix, cov);
+                double dz = posonhelix.z() - hitpos.z();
+
+                double dzErr = Math.sqrt(cov.e(2, 2));
+                aida.cloud1D(hit.Detector() + " dxdy").fill(dxdy);
+                aida.cloud1D(hit.Detector() + " dz").fill(dz);
+                aida.cloud1D(hit.Detector() + " dxdy Pull").fill(dxdy / dxdyErr);
+                aida.cloud1D(hit.Detector() + " dz Pull").fill(dz / dzErr);
+                if (Math.abs(dz) > 4) {
+                    aida.cloud1D(hit.Detector() + "Bad dz--nHits").fill(nhits);
+                }
+                aida.cloud1D("NH Chi2 for Hits on Track").fill(hitchisq);
+            }
+
+            //  Analyze the hits on the track
+            TrackAnalysis tkanal = new TrackAnalysis(track, hittomc);
+
+            //  Calculate purity and make appropriate plots
+            int nbad = tkanal.getNBadHits();
+            int nhits = tkanal.getNHits();
+            double purity = tkanal.getPurity();
+            aida.histogram1D("Mis-matched hits for all tracks", 10, 0., 10.).fill(nbad);
+            aida.histogram1D("Mis-matched hits " + nhits + " hit tracks", 10, 0., 10.).fill(nbad);
+
+            //  Generate a normalized histogram after 1000 events
+            trk_count++;
+            if (nevt <= 1000) {
+                fakes.fill(nbad);
+            }
+
+            //  Make plots for fake, non-fake, and all tracks
+            if (purity < 0.5) {
+                aida.histogram1D("Hits for fake tracks", 20, 0., 20.).fill(nhits);
+                aida.histogram1D("pT for fake tracks", 100, 0., 10.).fill(pt);
+                aida.histogram1D("cos(theta) for fake tracks", 100, -1., 1.).fill(cth);
+                aida.histogram1D("d0 for fake tracks", 50, -10., 10.).fill(d0);
+                aida.histogram1D("z0 for fake tracks", 50, -10., 10.).fill(z0);
+                aida.histogram1D("eta for fake tracks", 100, -2., 2.).fill(eta);
+                  etafake.fill(eta, 1.0);
+            } else {
+                aida.histogram1D("Hits for non-fake tracks", 20, 0., 20.).fill(nhits);
+                aida.histogram1D("pT for non-fake tracks", 100, 0., 10.).fill(pt);
+                aida.histogram1D("cos(theta) for non-fake tracks", 100, -1., 1.).fill(cth);
+                aida.histogram1D("d0 for non-fake tracks", 50, -10., 10.).fill(d0);
+                aida.histogram1D("z0 for non-fake tracks", 50, -10., 10.).fill(z0);
+                aida.histogram1D("eta for non-fake tracks", 100, -2., 2.).fill(eta);
+                 etafake.fill(eta, 0.0);
+            }
+            aida.histogram1D("Hits for all tracks", 20, 0., 20.).fill(nhits);
+            aida.histogram1D("pT for all tracks", 100, 0., 10.).fill(pt);
+            aida.histogram1D("cos(theta) for all tracks", 100, -1., 1.).fill(cth);
+            aida.histogram1D("d0 for all tracks", 50, -10., 10.).fill(d0);
+            aida.histogram1D("z0 for all tracks", 50, -10., 10.).fill(z0);
+            aida.histogram1D("eta for all tracks", 100, -2., 2.).fill(eta);
+            aida.cloud2D("Hits vs eta for all tracks").fill(eta, nhits);
+            //  Now analyze MC Particles on this track
+            MCParticle mcp = tkanal.getMCParticle();
+            if (mcp != null) {
+
+                //  Create a map between the tracks found and the assigned MC particle
+                trktomc.add(track, tkanal.getMCParticle());
+
+                //  Calculate the MC momentum and polar angle
+                Hep3Vector pmc = mcp.getMomentum();
+                double pxmc = pmc.x();
+                double pymc = pmc.y();
+                double ptmc = Math.sqrt(pxmc * pxmc + pymc * pymc);
+                double pxtk = track.getPX();
+                double pytk = track.getPY();
+                double pttk = Math.sqrt(pxtk * pxtk + pytk * pytk);
+
+                //  Calculate the helix parameters for this MC particle and pulls in pT, d0
+                HelixParamCalculator helix = new HelixParamCalculator(mcp, bfield);
+                double d0tk = track.getTrackParameter(HelicalTrackFit.dcaIndex);
+                double d0mc = helix.getDCA();
+                double d0err = Math.sqrt(track.getErrorMatrix().diagonal(HelicalTrackFit.dcaIndex));
+                double curv = track.getTrackParameter(HelicalTrackFit.curvatureIndex);
+                double curverr = Math.sqrt(track.getErrorMatrix().diagonal(HelicalTrackFit.curvatureIndex));
+                double pterr = pttk * curverr / curv;
+                double d0pull = (d0tk - d0mc) / d0err;
+                double ptpull = (pttk - ptmc) / pterr;
+                double ptresid = (pttk - ptmc);
+                double d0resid = (d0tk - d0mc);
+                //  Plot the pt and d0 pulls for various purity intervals
+                if (nbad == 0) {
+                    aida.histogram2D("pT MC vs pT Reco for 0 Bad Hits",
+                            100, 0., 5., 100, 0., 5.).fill(ptmc, pttk);
+                    aida.histogram2D("d0 MC vs d0 Reco for 0 Bad Hits",
+                            100, -0.2, 0.2, 100, -0.2, 0.2).fill(d0mc, d0tk);
+                    aida.histogram1D("pT Pull for 0 Bad Hits", 100, -10., 10.).fill(ptpull);
+                    aida.histogram1D("d0 pull for 0 Bad Hits", 100, -10., 10.).fill(d0pull);
+                    aida.cloud1D("pT Residual for 0 Bad Hits").fill(ptresid);
+                    aida.cloud1D("d0 Residual for 0 Bad Hits").fill(d0resid);
+
+                } else if (purity > 0.5) {
+                    aida.histogram2D("pT MC vs pT Reco for 0.5 < purity < 1",
+                            100, 0., 5., 100, 0., 5.).fill(ptmc, pttk);
+                    aida.histogram2D("d0 MC vs d0 Reco for 0.5 < purity < 1",
+                            100, -0.2, 0.2, 100, -0.2, 0.2).fill(d0mc, d0tk);
+                    aida.histogram1D("pT Pull for 0.5 < purity < 1", 100, -10., 10.).fill(ptpull);
+                    aida.histogram1D("d0 pull for 0.5 < purity < 1", 100, -10., 10.).fill(d0pull);
+                    aida.cloud1D("pT Residual for 0.5 < purity < 1").fill(ptresid);
+                    aida.cloud1D("d0 Residual for 0.5 < purity < 1").fill(d0resid);
+                } else if (purity < 0.5) {
+                    aida.histogram2D("pT MC vs pT Reco for purity <= 0.5",
+                            100, 0., 5., 100, 0., 5.).fill(ptmc, pttk);
+                    aida.histogram2D("d0 MC vs d0 Reco for purity <= 0.5",
+                            100, -0.2, 0.2, 100, -0.2, 0.2).fill(d0mc, d0tk);
+                    aida.histogram1D("pT Pull for purity <= 0.5", 100, -10., 10.).fill(ptpull);
+                    aida.histogram1D("d0 pull for purity <= 0.5", 100, -10., 10.).fill(d0pull);
+                    aida.cloud1D("pT Residual for purity <= 0.5").fill(ptresid);
+                    aida.cloud1D("d0 Residial for purity <= 0.5").fill(d0resid);
+                }
+            }
+        }
+
+        //  Make the normalized fake plot after the specified number of events
+        if (nevt == 1000) {
+            double wgt = 1. / trk_count;
+            for (int i = 0; i < 10; i++) {
+                System.out.println(" Entries: " + fakes.binEntries(i) + " for mismatches: " + i);
+                for (int j = 0; j < fakes.binHeight(i); j++) {
+                    nfakes.fill(i, wgt);
+                }
+            }
+            System.out.println("Normalization: " + nfakes.sumAllBinHeights() + " after ntrk = " + trk_count);
+        }
+
+        //  Now loop over all MC Particles
+        List<MCParticle> mclist = event.getMCParticles();
+        for (MCParticle mcp : mclist) {
+
+            //  Calculate the pT and polar angle of the MC particle
+            double px = mcp.getPX();
+            double py = mcp.getPY();
+            double pz = mcp.getPZ();
+            double pt = Math.sqrt(px * px + py * py);
+            double p = Math.sqrt(pt * pt + pz * pz);
+            double cth = pz / p;
+            double theta = 180. * Math.acos(cth) / Math.PI;
+            double eta = -Math.log(Math.tan(Math.atan2(pt, pz) / 2));
+            //  Find the number of layers hit by this mc particle
+//            System.out.println("MC pt=" + pt);
+            int nhits = findable.LayersHit(mcp);
+
+            //  Calculate the helix parameters for this MC particle
+            HelixParamCalculator helix = new HelixParamCalculator(mcp, bfield);
+            double d0 = helix.getDCA();
+            double z0 = helix.getZ0();
+
+            //  Check cases where we have multiple tracks associated with this MC particle
+            Set<Track> trklist = trktomc.allTo(mcp);
+            int ntrk = trklist.size();
+//            if (ntrk > 1) {
+            //  Count tracks where the assigned MC particle has more than 1 hit
+//                int nmulthits = 0;
+//                for (Track trk : trklist) {
+//                    TrackAnalysis tkanal = new TrackAnalysis(trk, hittomc);
+//                    if (tkanal.getNBadHits() < tkanal.getNHits() - 1)
+//                        nmulthits++;
+//                }
+            //  Flag any anomalous cases that we find
+//                if (nmulthits > 1) {
+//                    System.out.println("2 tracks associated with a single MC Particle");
+//                    for (Track trk : trklist) System.out.println(trk.toString());
+//                }
+//            }
+
+            //  Make pT efficiency plot
+            if (findable.isFindable(mcp, slist, Ignore.NoPTCut)) {
+                double wgt = 0.;
+                if (ntrk > 0) {
+                    wgt = 1.;
+                }
+                pTeff1.fill(pt, wgt);
+                pTeff2.fill(pt, wgt);
+            }
+
+            //  Make angular efficiency plot
+            if (findable.isFindable(mcp, slist)) {
+                double wgt = 0.;
+                if (ntrk > 0) {
+                    wgt = 1.;
+                }
+                thetaeff.fill(theta, wgt);
+                ctheff.fill(cth, wgt);
+                etaeff.fill(eta, wgt);
+            }
+
+            //  Make d0 efficiency plot
+            if (findable.isFindable(mcp, slist, Ignore.NoDCACut)) {
+                double wgt = 0.;
+                if (ntrk > 0) {
+                    wgt = 1.;
+                }
+                d0eff1.fill(d0, wgt);
+                d0eff2.fill(d0, wgt);
+            }
+
+            //  Make z0 efficiency plot
+            if (findable.isFindable(mcp, slist, Ignore.NoZ0Cut)) {
+                double wgt = 0.;
+                if (ntrk > 0) {
+                    wgt = 1.;
+                }
+                z0eff1.fill(z0, wgt);
+                z0eff2.fill(z0, wgt);
+            }
+
+            //  Select charged MC particles
+            if (mcp.getCharge() == 0) {
+                continue;
+            }
+
+            //  Select mcp that fail the final state requirement
+            if (mcp.getGeneratorStatus() != mcp.FINAL_STATE) {
+                aida.histogram1D("Hits for non-final state particles", 20, 0., 20.).fill(nhits);
+                aida.histogram1D("pT for non-final state particles", 100, 0., 10.).fill(pt);
+                aida.histogram1D("cos(theta) for non-final state particles", 100, -1., 1.).fill(cth);
+                aida.histogram1D("eta for non-final state particles", 100, -2., 2.).fill(eta);
+                aida.histogram1D("d0 for non-final state particles", 100, -100., 100.).fill(d0);
+                aida.histogram1D("z0 for non-final state particles", 100, -100., 100.).fill(z0);
+                aida.cloud2D("Hits vs eta for non-final state particles").fill(eta, nhits);
+                continue;
+            }
+
+            //  Make plots for the base sample
+            aida.histogram1D("Hits for base MC selection", 20, 0., 20.).fill(nhits);
+            aida.histogram1D("pT for base MC selection", 100, 0., 10.).fill(pt);
+            aida.histogram1D("cos(theta) for base MC selection", 100, -1., 1.).fill(cth);
+            aida.histogram1D("eta for base MC selection", 100, -2., 2.).fill(eta);
+            aida.histogram1D("d0 for base MC selection", 100, -100., 100.).fill(d0);
+            aida.histogram1D("z0 for base MC selection", 100, -100., 100.).fill(z0);
+            aida.cloud2D("Hits vs eta for base MC selection").fill(eta, nhits);
+
+            //  Make plots for findable tracks
+            if (findable.isFindable(mcp, slist)) {
+                aida.histogram1D("Hits for findable tracks", 20, 0., 20.).fill(nhits);
+                aida.histogram1D("pT for findable tracks", 100, 0., 10.).fill(pt);
+                aida.histogram1D("cos(theta) for findable tracks", 100, -1., 1.).fill(cth);
+                aida.histogram1D("eta for findable tracks", 100, -2., 2.).fill(eta);
+                aida.histogram1D("d0 for findable tracks", 100, -100., 100.).fill(d0);
+                aida.histogram1D("z0 for findable tracks", 100, -100., 100.).fill(z0);
+                aida.cloud2D("Hits vs eta for findable tracks").fill(eta, nhits);
+                continue;
+            }
+
+            //  Create the running list of conditions to ignore
+            List<Ignore> ignores = new ArrayList<Ignore>();
+
+            //  select mc particles that fail on the z0 cut
+
+            ignores.add(Ignore.NoZ0Cut);
+            if (findable.isFindable(mcp, slist, ignores)) {
+                aida.histogram1D("Hits for z0 check failures", 20, 0., 20.).fill(nhits);
+                aida.histogram1D("pT for z0 check failures", 100, 0., 10.).fill(pt);
+                aida.histogram1D("cos(theta) for z0 check failures", 100, -1., 1.).fill(cth);
+                aida.histogram1D("eta for z0 check failures", 100, -2., 2.).fill(eta);
+                aida.histogram1D("d0 for z0 check failures", 100, -100., 100.).fill(d0);
+                aida.histogram1D("z0 for z0 check failures", 100, -100., 100.).fill(z0);
+                continue;
+            }
+
+            //  Select mc particles that fail on the d0 cut
+            ignores.add(Ignore.NoDCACut);
+            if (findable.isFindable(mcp, slist, ignores)) {
+                aida.histogram1D("Hits for d0 check failures", 20, 0., 20.).fill(nhits);
+                aida.histogram1D("pT for d0 check failures", 100, 0., 10.).fill(pt);
+                aida.histogram1D("cos(theta) for d0 check failures", 100, -1., 1.).fill(cth);
+                aida.histogram1D("eta for d0 check failures", 100, -2., 2.).fill(eta);
+                aida.histogram1D("d0 for d0 check failures", 100, -100., 100.).fill(d0);
+                aida.histogram1D("z0 for d0 check failures", 100, -100., 100.).fill(z0);
+                continue;
+            }
+
+            //  select mc particles that fail the confirm check
+            ignores.add(Ignore.NoConfirmCheck);
+            if (findable.isFindable(mcp, slist, ignores)) {
+                aida.histogram1D("Hits for confirm check failures", 20, 0., 20.).fill(nhits);
+                aida.histogram1D("pT for confir check failures", 100, 0., 10.).fill(pt);
+                aida.histogram1D("cos(theta) for confirm check failures", 100, -1., 1.).fill(cth);
+                aida.histogram1D("eta for confirm check failures", 100, -2., 2.).fill(eta);
+                aida.histogram1D("d0 for seed confirm failures", 100, -100., 100.).fill(d0);
+                aida.histogram1D("z0 for seed confirm failures", 100, -100., 100.).fill(z0);
+                continue;
+            }
+
+            //  select mc particles that fail on the seed check
+            ignores.add(Ignore.NoSeedCheck);
+            if (findable.isFindable(mcp, slist, ignores)) {
+                aida.histogram1D("Hits for seed check failures", 20, 0., 20.).fill(nhits);
+                aida.histogram1D("pT for seed check failures", 100, 0., 10.).fill(pt);
+                aida.histogram1D("cos(theta) for seed check failures", 100, -1., 1.).fill(cth);
+                aida.histogram1D("eta for seed check failures", 100, -1., 1.).fill(eta);
+                aida.histogram1D("d0 for seed check failures", 100, -100., 100.).fill(d0);
+                aida.histogram1D("z0 for seed check failures", 100, -100., 100.).fill(z0);
+                continue;
+            }
+
+            //  Select mc particles that fail the number of hit cut
+            ignores.add(Ignore.NoMinHitCut);
+            if (findable.isFindable(mcp, slist, ignores)) {
+                aida.histogram1D("Hits for nhit check failures", 20, 0., 20.).fill(nhits);
+                aida.histogram1D("pT for nhit check failures", 100, 0., 10.).fill(pt);
+                aida.histogram1D("cos(theta) for nhit check failures", 100, -1., 1.).fill(cth);
+                aida.histogram1D("eta for nhit check failures", 100, -2., 2.).fill(eta);
+                aida.histogram1D("d0 for nhit check failures", 100, -100., 100.).fill(d0);
+                aida.histogram1D("z0 for nhit check failures", 100, -100., 100.).fill(z0);
+                continue;
+            }
+
+            //  Select mc particles that fail on the pT cut
+            ignores.add(Ignore.NoPTCut);
+            if (findable.isFindable(mcp, slist, ignores)) {
+                aida.histogram1D("Hits for pT check failures", 20, 0., 20.).fill(nhits);
+                aida.histogram1D("pT for pT check failures", 100, 0., 10.).fill(pt);
+                aida.histogram1D("cos(theta) for pT check failures", 100, -1., 1.).fill(cth);
+                aida.histogram1D("eta for pT check failures", 100, -2., 2.).fill(eta);
+                aida.histogram1D("d0 for pT check failures", 100, -100., 100.).fill(d0);
+                aida.histogram1D("z0 for pT check failures", 100, -100., 100.).fill(z0);
+            } else {
+                System.out.println("MC Particle is not findable with all ignores set!!");
+            }
+ 
+        }
+        return;
+    }
+
+    private double getr(double x, double y) {
+        return Math.sqrt(x * x + y * y);
+    }
+
+    protected double drcalc(Hep3Vector pos, SymmetricMatrix cov) {
+        double x = pos.x();
+        double y = pos.y();
+        double r2 = x * x + y * y;
+        return Math.sqrt((x * x * cov.e(0, 0) + y * y * cov.e(1, 1) + 2. * x * y * cov.e(0, 1)) / r2);
+    }
+
+    protected double drphicalc(Hep3Vector pos, SymmetricMatrix cov) {
+        double x = pos.x();
+        double y = pos.y();
+        double r2 = x * x + y * y;
+        return Math.sqrt((y * y * cov.e(0, 0) + x * x * cov.e(1, 1) - 2. * x * y * cov.e(0, 1)) / r2);
+    }
+
+    private double getphi(double x, double y) {
+        double phi = Math.atan2(y, x);
+        if (phi < 0.) {
+            phi += 2. * Math.PI;
+        }
+        return phi;
+    }
+
+    private double getdxdy(Hep3Vector hitpos, Hep3Vector posonhelix) {
+        return Math.sqrt(Math.pow(hitpos.x() - posonhelix.x(), 2) + Math.pow(hitpos.y() - posonhelix.y(), 2));
+    }
+
+    private double getdxdyErr(Hep3Vector hitpos, Hep3Vector posonhelix, SymmetricMatrix cov) {
+        double dxdySq = Math.pow(hitpos.x() - posonhelix.x(), 2) + Math.pow(hitpos.y() - posonhelix.y(), 2);
+        double ErrSqDxDySq = 4 * (cov.e(0, 0) * Math.pow(hitpos.x() - posonhelix.x(), 2) + cov.e(1, 1) * Math.pow(hitpos.y() - posonhelix.y(), 2));
+        double error = Math.sqrt(ErrSqDxDySq / dxdySq) / 2;
+        return error;
+    }
+}
+
+

lcsim-contrib/src/main/java/org/lcsim/contrib/sATLAS
TrackReconstructionDriver.java added at 1.1
diff -N TrackReconstructionDriver.java
--- /dev/null	1 Jan 1970 00:00:00 -0000
+++ TrackReconstructionDriver.java	28 Apr 2009 21:18:08 -0000	1.1
@@ -0,0 +1,48 @@
+/*
+ * TrackReconstructionDriver class
+ */
+package org.lcsim.contrib.sATLAS;
+
+import java.util.List;
+
+import org.lcsim.fit.helicaltrack.HelicalTrackHitDriver;
+import org.lcsim.fit.helicaltrack.HelicalTrackHitDriver.HitType;
+import org.lcsim.recon.tracking.seedtracker.SeedStrategy;
+import org.lcsim.recon.tracking.seedtracker.SeedTracker;
+import org.lcsim.recon.tracking.seedtracker.StrategyXMLUtils;
+import org.lcsim.util.Driver;
+import org.lcsim.util.aida.AIDA;
+
+/**
+ * Driver to perform hit digitization and track reconstruction for the sATLAS detector
+ *
+ * @author M. Graham and R. Partridge
+ */
+public class TrackReconstructionDriver extends Driver {
+
+    private AIDA aida = AIDA.defaultInstance();
+ 
+    public TrackReconstructionDriver() {
+
+        //  Digitization and hit making driver for planar sensors
+        TrackerHitDriver_sATLAS thd = new TrackerHitDriver_sATLAS();
+        add(thd);
+
+        //  Driver to make HelicalTrackHits for tracking
+        HelicalTrackHitDriver hitdriver = new HelicalTrackHitDriver();
+        hitdriver.addCollection(((TrackerHitDriver_sATLAS) thd).getStripHits1DName(), HitType.Digitized);
+        hitdriver.addCollection(((TrackerHitDriver_sATLAS) thd).getPixelHitsName(), HitType.Digitized);
+        hitdriver.OutputCollection("HelicalTrackHits");
+        add(hitdriver);
+
+        //  Tracking code
+        String sfile = StrategyXMLUtils.getDefaultStrategiesPrefix() + "sATLASBarrel-SM08.xml";
+        List<SeedStrategy> slist = StrategyXMLUtils.getStrategyListFromResource(sfile);
+
+        SeedTracker st = new SeedTracker(slist);
+        add(st);
+    }
+
+
+
+}

lcsim-contrib/src/main/java/org/lcsim/contrib/sATLAS
TrackerHitDriver_sATLAS.java added at 1.1
diff -N TrackerHitDriver_sATLAS.java
--- /dev/null	1 Jan 1970 00:00:00 -0000
+++ TrackerHitDriver_sATLAS.java	28 Apr 2009 21:18:08 -0000	1.1
@@ -0,0 +1,184 @@
+/*
+ * TrackerHitDriver.java
+ *
+ * Created on February 15, 2008, 7:09 PM
+ *
+ * To change this template, choose Tools | Template Manager
+ * and open the template in the editor.
+ */
+package org.lcsim.contrib.sATLAS;
+
+import java.util.ArrayList;
+import java.util.HashSet;
+import java.util.List;
+import java.util.Set;
+
+import org.lcsim.detector.IDetectorElement;
+import org.lcsim.detector.tracker.silicon.SiSensor;
+import org.lcsim.detector.tracker.silicon.SiTrackerModule;
+import org.lcsim.event.EventHeader;
+import org.lcsim.event.RawTrackerHit;
+import org.lcsim.geometry.Detector;
+import org.lcsim.recon.tracking.digitization.sisim.CDFSiSensorSim;
+import org.lcsim.recon.tracking.digitization.sisim.Clusterer;
+import org.lcsim.recon.tracking.digitization.sisim.GenericReadoutChip;
+import org.lcsim.recon.tracking.digitization.sisim.PixelHitMaker;
+import org.lcsim.recon.tracking.digitization.sisim.RawTrackerHitMaker;
+import org.lcsim.recon.tracking.digitization.sisim.ReadoutChip;
+import org.lcsim.recon.tracking.digitization.sisim.SiDigitizer;
+import org.lcsim.recon.tracking.digitization.sisim.SiSensorSim;
+import org.lcsim.recon.tracking.digitization.sisim.SiTrackerHit;
+import org.lcsim.recon.tracking.digitization.sisim.SiTrackerHitPixel;
+import org.lcsim.recon.tracking.digitization.sisim.SiTrackerHitStrip1D;
+import org.lcsim.recon.tracking.digitization.sisim.SimTrackerHitReadoutDriver;
+import org.lcsim.recon.tracking.digitization.sisim.StripHitMaker;
+import org.lcsim.util.Driver;
+import org.lcsim.util.lcio.LCIOConstants;
+
+/**
+ *
+ * @author tknelson
+ */
+public class TrackerHitDriver_sATLAS extends Driver {
+
+    List<String> _readouts = new ArrayList<String>();
+    List<String> _process_paths = new ArrayList<String>();
+    List<IDetectorElement> _process_de = new ArrayList<IDetectorElement>();
+    Set<SiSensor> _process_sensors = new HashSet<SiSensor>();
+    Set<SiTrackerModule> _process_modules = new HashSet<SiTrackerModule>();
+    SiDigitizer _digitizer;
+    Clusterer _strip_clusterer;
+    Clusterer _pixel_clusterer;
+    int _nev = 0;
+
+    /**
+     * Creates a new instance of TrackerHitDriver
+     */
+    // Default constructor
+    public TrackerHitDriver_sATLAS() {
+        
+        //  Instantiate the sensor simulation classes and set the thresholds
+        SiSensorSim strip_simulation = new CDFSiSensorSim();
+        SiSensorSim pixel_simulation = new CDFSiSensorSim();
+
+        //  Instantiate the readout chips and set the noise parameters
+        ReadoutChip strip_readout = new GenericReadoutChip();
+        strip_readout.setNoiseOffset(500.);
+        strip_readout.setNoiseSlope(30.);
+        ReadoutChip pixel_readout = new GenericReadoutChip();
+        pixel_readout.setNoiseOffset(500.);
+        pixel_readout.setNoiseSlope(30.);
+
+        //  Instantiate the digitizer that produces the raw hits
+        _digitizer = new RawTrackerHitMaker(strip_simulation, strip_readout);
+
+        //  Instantiate the clusterers
+        _strip_clusterer = new StripHitMaker(strip_simulation, strip_readout);
+        _pixel_clusterer = new PixelHitMaker(pixel_simulation, pixel_readout);
+
+        //  Specify the readouts to process
+        _readouts.add("VtxBarrHits");
+        _readouts.add("SCTShortBarrHits");
+        _readouts.add("SCTLongBarrHits");
+        _readouts.add("VtxEndcapHits");
+        _readouts.add("SCTShortEndcapHits");
+        _readouts.add("SiTrackerEndcap_RO");
+
+        //  Specify the detectors to process
+        _process_paths.add("VtxPixelBarrel");
+        _process_paths.add("SCTShortBarrel");
+        _process_paths.add("SCTLongBarrel");
+        _process_paths.add("VtxPixelEndcap");
+        _process_paths.add("SCTShortEndcap");
+        _process_paths.add("SCTLongEndcap");
+
+
+    }
+
+
+    // Actions begins here
+    //====================
+    public void detectorChanged(Detector detector) {
+        System.out.println(detector.getName());
+        super.detectorChanged(detector);
+
+        // Process detectors specified by path, otherwise process entire detector
+        IDetectorElement detector_de = detector.getDetectorElement();
+        System.out.println(detector_de.getName());
+        for (String de_path : _process_paths) {
+            _process_de.add(detector_de.findDetectorElement(de_path));
+        }
+
+        if (_process_de.size() == 0) {
+            _process_de.add(detector_de);
+        }
+
+        for (IDetectorElement detector_element : _process_de) {
+            _process_sensors.addAll(detector_element.findDescendants(SiSensor.class));
+            _process_modules.addAll(detector_element.findDescendants(SiTrackerModule.class));
+        }
+
+    }
+
+    public void startOfData() {
+        // If readouts not already set, set them up
+        if (_readouts.size() != 0) {
+            System.out.println("Adding SimTrackerHitIdentifierReadoutDriver with readouts: " + _readouts);
+            super.add(new SimTrackerHitReadoutDriver(_readouts));
+        }
+
+        super.startOfData();
+        _readouts.clear();
+        _nev = 0;
+    }
+
+    public void process(EventHeader event) {
+        super.process(event);
+
+        //  Print out the event number
+        System.out.println("TrackerHitDriver processing event "+_nev);
+        _nev++;
+
+        // Lists of hits
+        List<RawTrackerHit> raw_hits = new ArrayList<RawTrackerHit>();
+
+        List<SiTrackerHit> hits_strip1D = new ArrayList<SiTrackerHit>();
+        List<SiTrackerHit> hits_pixel = new ArrayList<SiTrackerHit>();
+        List<SiTrackerHit> hits_strip2D = new ArrayList<SiTrackerHit>();
+
+        for (SiSensor sensor : _process_sensors) {
+            raw_hits.addAll(_digitizer.makeHits(sensor));
+
+            if (sensor.hasStrips()) {
+                hits_strip1D.addAll(_strip_clusterer.makeHits(sensor));
+            }
+
+
+            if (sensor.hasPixels()) {
+                hits_pixel.addAll(_pixel_clusterer.makeHits(sensor));
+            }
+
+        }
+
+        int flag = (1 << LCIOConstants.RTHBIT_HITS | 1 << LCIOConstants.TRAWBIT_ID1); //correct flag for persistence 
+        event.put(getRawHitsName(), raw_hits, RawTrackerHit.class, flag, toString());
+        event.put(getStripHits1DName(), hits_strip1D, SiTrackerHitStrip1D.class, 0, toString());
+        event.put(getPixelHitsName(), hits_pixel, SiTrackerHitPixel.class, 0, toString());
+
+    }
+
+    // Collection names
+    //-----------------
+    public String getRawHitsName() {
+        return _digitizer.getName() + "_RawTrackerHits";
+    }
+
+    public String getStripHits1DName() {
+        return _strip_clusterer.getName() + "_SiTrackerHitStrip1D";
+    }
+
+    public String getPixelHitsName() {
+        return _pixel_clusterer.getName() + "_SiTrackerHitPixel";
+    }
+
+}

lcsim-contrib/src/main/java/org/lcsim/contrib/sATLAS
sATLASDigiDriver.java added at 1.1
diff -N sATLASDigiDriver.java
--- /dev/null	1 Jan 1970 00:00:00 -0000
+++ sATLASDigiDriver.java	28 Apr 2009 21:18:08 -0000	1.1
@@ -0,0 +1,19 @@
+/*
+ * sATLASDigiDriver class
+ */
+
+package org.lcsim.contrib.sATLAS;
+
+import org.lcsim.util.Driver;
+
+/**
+ *  Driver for track reconstruction and analysis of sATLAS detector
+ *
+ * @author M. Graham and R. Partridge
+ */
+public class sATLASDigiDriver extends Driver {
+    public sATLASDigiDriver(){
+        add(new TrackReconstructionDriver());
+        add(new TrackAnalysisDriver());
+    }
+}
CVSspam 0.2.8