Particle-Flow Algorithm Development and **Charm Physics with BaBar**

Department of Energy Site Visit July 14–15, 2010

Ray Cowan **Lepton-Quark Studies**

Technology

Part I. Particle-Flow Algorithm Development

Motivation

- Work so far is in context of the SiD detector concept
 - But is applicable elsewhere
 - Part of larger study of SiD global parameters
 - Especially those relating to calorimetry
 - Keep in mind physics performance vs. cost as well as jet energy resolution vs. global parameters
- Variations in hadronic calorimeter (HCAL) design
 - Thickness in interaction lengths
 - Inner radius
 - Length
 - Transverse segmentation
 - Layer thickness
 - Material
 - Readout
- Jet energy studies
- Particle-Flow Algorithm summary

MIT HCAL variants study

- This study covers variations in sid02 HCAL parameters
 - "sid02" is a current benchmark for SiD studies
 - Uses generic component shapes (cylinders, planes; faster than more detailed descriptions)
 - HCAL λ_{total} = 4.0, 4.5, 5.0, 5.5, 6.0 λ_{int}
 - Number layers = 30, 40, 50, 60
 - Cell size 1x1 cm²
 - Data sets
 - 10k qqbar events at 100, 200, 350, 500, and 1000 GeV
 - 10k events ZZ→ nunubar, uds at 500 GeV
- Recently began running on CMS Tier-2 center at MIT
 - Running one variant (at all energies for qqbar & ZZ) takes < 2 days
 - Was 3-4 weeks on old Condor system
- Becomes practical to investigate a larger range of global parameter space
- Obvious things to do include
 - Update to latest lcsim software
 - Vary HCAL cell size, length, ...
 - Compare to PandoraPFA running in Icsim package

Notes on Simulation

- λ_{total} for each variant calculated as
 - λ_{total} = total absorber depth + (λ_{int} /readout layer) x (# readout layers)
- Readout layer geometry is fixed across all variants
 - 0.8 cm thickness per readout layer
 - 0.0096 λ_{int} per readout layer
 - Fraction of λ_{total} due to readout layers varies:
 - 30 layers: 0.29 λ_{int}
 - 60 layers: 0.58 λ_{int}
- Statistical uncertainties on RMS90 values
 - On order of ±0.1–0.2 percentage points

4

Sample of results at λ_{total} = 6.0, barrel region

Variant	30 layers		40 layers		50 layers		60 layers		sid02 default*	
All in GeV	m90	r90	m90	r90	m90	r90	m90	r90	m90	r90
qq100 Event energy	-1.7 (7278)	3.9%	-2.3 (7278)	3.6%	-2.1 (7278)	3.7%	-2.1 (7278)	3.6%	-1.8	3.7%
qq200 Event energy	-5.2 (7275)	3.1%	-6.7 (7275)	3.0%	-6.1 (7275)	3.0%	-5.8 (7275)	3.0%	-4.9	3.0%
qq350 Event energy	-7.8 (7177)	3.1%	-11.0 (7177)	3.0%	-9.2 (7177)	3.5%	-6.9 (7177)	3.2%	N/A	N/A
qq500 Event energy	-11.5 (7332)	3.6%	-17.3 (7332)	3.5%	-9.6 (7332)	3.9%	-6.4 (7332)	3.8%	-13.6	3.5%
qq1000 Event energy	-22.9 (6523)	5.9%	-38.3 (6876)	5.7%	-2.8 (6876)	6.3%	+1.4 (6876)	6.1%	N/A	N/A
ZZ500 Dijet mass	-1.3 (2370)	4.8%	-2.1 (2370)	4.7%	-1.6 (2370)	4.8%	-1.4 (2370)	4.8%	-1.2	4.7%

5

 $(nnnn) = \pi$ entries in aida cioud * = M. Charles, LCWS08

SiD rms90 qqbar 200 GeV

- Interpolated contour plots of jet energy resolution
 - 20 points (5 depth x 4 #layers combos)
 - Barrel/endcap definition
 - cos(θ_{beam}) ≡ polar angle of generated Z→qqbar
 - Barrel region
 - $\square |\cos(\theta_{\text{beam}})| < 0.8$
 - Endcap region
 - **D** 0.8 < $|\cos(\theta_{\text{beam}})|$ < 0.95
- Average, general trends are evident
 - Thicker calorimeter, more layers improves resolution
 - But more to understand about the details

| | | i i

Another way to compare HCAL variants

- Compare two HCAL variants
 - Variant 1 (v1): 4.0 λ, 30 layers, cell size 1x1 cm²
 - Variant 2 (v2): 6.0 λ, 60 layers, cell size 1x1 cm²
- Simulated events
 - $e^+e^- \rightarrow ZZ @ 500 \text{ GeV}$
 - 1st $\mathbf{Z} \rightarrow \nu$ anti- ν
 - $2^{nd} Z \rightarrow uds$ quark jets
 - Includes gluon radiation and beamstrahlung
- Shows improved Z mass resolution of variant 2 w.r.t. variant 1
 - Band at constant M_z is due to events with significant amounts of beamstrahlung and gluon radiation
 - Interesting feature is the diagonal tail
 - Needs more investigation

Ray Cowan Lepton-Quark Studies Dept. of Energy Site Visit July 14–15 , 2010

Additional Ideas

- Remember that the PFA approach is being used outside the context of ILC detectors
 - Example: CMS
 - Joe Incandela: "Particle–Flow Event Reconstruction in CMS and Performance for Jets, Taus, and Emiss_T" <u>http://cms-physics.web.cern.ch/cms-physics/public/PFT-09-001-pas.pdf</u>
- It may be useful to keep in touch with folks outside the ILC PFA community as well
 - We wonder if it might make sense at some point to hold a PFA workshop addressing both the ILC and non-ILC PFA community
- Can other shower characteristics be used to divide showers into categories with different statistical behavior?
 - What about the effect of leading particles in showers?
 - Can consideration of lateral vs. longitudinal spread provide information?
 - Some studies along this line have been done before
 - Is it useful to do so again?
- Look at effects of HCAL cross-talk/noise using digisim
- Choose two or three variants to use as testbed for PFA development
 - Get a better idea of how detector and software improvements change energy resolutions

PFA summary

- Initial results of sid02 HCAL global parameters study show
 - Average behavior is that resolution improves
 - With increasing λ_{total}
 - With increasing # layers for fixed λ_{total}
 - But there are questions
 - E.g., poorer resolution at λ_{total} = 4.0 λ_{int} and 60 layers
- We will write a cone jet algorithm just for comparison
- We will write a technical note on this study
- We are running now
 - sid02 with cell sizes 3x3 cm², 5x5 mm²
- Access to substantially more CPU cycles
 - By factor of 10–20x
 - Permits addressing these and other issues

Part II. Charm physics with BaBar

- Highlights & history
- Motivation & phenomenology
- Current & future work
- Wrapping up BaBar effort
 - Current K 3π analysis
 - Extend to amplitude analysis
 - Considering $K_s \pi \pi \pi 0$
 - **n** Natural extension of K3 π
 - Leverage long-term investment in BaBar
 - Leverage the wonderful BaBar dataset
 - BaBar published results across the physics spectrum remain competitive with Belle published results
 - **Even in light of Belle's 80% more data**
 - Contribute to the BaBar/Belle physics legacy book (2012 timescale)

Charm mixing highlights & history

Highlights

- Working on charm mixing since 2002
 - UC Santa Cruz joined in the effort in 2004
 - Stanford in 2006
- Unexpectedly strong evidence for mixing ~4 σ
 - Discovered in 2007 using $D^0 \rightarrow K\pi$ decays
- Coincident with strong evidence from Belle at same time
- Started new flurry activity in the field that continues today
 - Vigorous pursuit of both mixing and CPV in the charm sector
 - CLEO, BaBar, Belle, CDF, D0, others
 - Expect interesting new results from LHCb, other LHC
- Charm mixing analyses in BaBar make use of the decay modes
 - $D^0 \rightarrow K\pi$, KK, $\pi\pi$, K $\pi\pi^0$, K_s $\pi\pi$, $\pi\pi\pi^0$
- Our main efforts have been in
 - Kπ PRL 98:211802,2007 ("TopCite 100+" in SPIRES)
 - KK/Kπ (tagged) PRD 78 011105(R) (2008)
 - KK/Kπ (untagged) PRD 80 071103(R) (2009)
 - K3 π in progress
- Support other efforts in BaBar (not primary analysts) especially:
 - CPV search using T-odd moments (uses KK $\pi\pi$ mode) Phys. Rev. D 81, 111103(R) (2010)
 - Update of KK/K
 Iifetime ratio in progress
- Although combined evidence for mixing is about 10σ (HFAG)
 - No single analysis yet provides evidence above 5σ

Charm meson mixing

Why is observation of charm mixing interesting?

It completes the picture of quark mixing already seen in the K, B_d , and B_s systems

- K-PR 103, 1901 (1956); PR 103, 1904 (1956)
- *B_d* PL B186, 247 (1987); PL B192, 245 (1987)
- *B_s* PRL 97, 021802 (2006); PRL 97, 242003 (2006)

It provides information about processes with down-type quarks in the mixing box diagram

It provides strong constraints on new physics

E. Golowich, J. Hewett, S. Pakvasa, A. Petrov PRD 76, 095009 (2007)

It is a significant step toward observation of *CP* violation in the charm sector—which would very likely signal new physics

Charm mixing phenomenology

Short- and long-distance effects

CP violation is observed

Patricia Ball, hep-ph/0703245, Moriond 2007: "The central problem of all these calculations is that the D is too heavy to be treated as light and too light to be treated as heavy."

 D^0

Short-distance

Long-distance

 W^+

 W^{-}

 \overline{D}^0

b, s, d

b.s.d

CP violation

CP violation (CPV) can be classified as occurring

- In direct decay: $|\overline{A}_{\overline{f}}/A_f| \neq 1$ where $A_f = BB\langle f|H_w|D^0\rangle$, $\overline{A}_{\overline{f}} = \langle \overline{f}|H_w|\overline{D}^0\rangle$
- In mixing: $|q/p| \neq 1$
- In the interference between them: $\operatorname{Im}\left(\frac{q}{p}\frac{\overline{A}_{f}}{A_{f}}\right) \neq 0$

CPV introduces an asymmetry

in the time-dependence between D^0 and \overline{D}^0 decays

$$\begin{split} \frac{d\Gamma}{dt}[|D^{0}(t)\rangle &\to f] &\propto e^{-\Gamma t} \times \left[R_{\rm D} + \sqrt{R_{\rm D}} \left| \frac{q}{p} \right| (y'\cos\varphi - x'\sin\varphi)\Gamma t + \left| \frac{q}{p} \right|^{2} \frac{x'^{2} + y'^{2}}{4} (\Gamma t)^{2} \right] \\ \frac{d\Gamma}{dt}[|\overline{D}^{0}(t)\rangle \to \overline{f}] &\propto e^{-\Gamma t} \times \left[R_{\rm D} + \sqrt{R_{\rm D}} \left| \frac{p}{q} \right| (y'\cos\varphi + x'\sin\varphi)\Gamma t + \left| \frac{p}{q} \right|^{2} \frac{x'^{2} + y'^{2}}{4} (\Gamma t)^{2} \right] \\ \end{split}$$
where φ is the phase angle of $\lambda_{f} = \left(\frac{q}{p} \overline{A_{f}} \right)$

Wrong-sign D⁰ decays

Determine the \overline{D}^0 flavor at production and at decay

Time-dependent decay rate

For *x*, $y \ll 1$

Allows for a strong phase difference $\delta_{K\pi}$ between CF and DCS direct decay

 $x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}, \quad y' = -x \sin \delta_{K\pi} + y \cos \delta_{K\pi}$

This phase may differ between decay modes Time-integrated mixing rate R_M defined by $R_M = \frac{x^2 + y^2}{2}$

19

D⁰ decay reconstruction

Charm mixing: KK/Kπ lifetime result

 Y_{CP} (untagged) = [1.12 ± 0.26 (stat.) ± 0.22 (syst.)]% PRD 80 071103(R) (2009) Y_{CP} (tagged) = [1.24 ± 0.39 (stat.) ± 0.13 (syst.)]% PRD 78 011105(R) (2008)

Significance of combined tagged and untagged results:

4.1 σ (including 100% correlated systematics)

21

Analysis improvements

- Significant improvements in BaBar reconstruction in last two years
 - Improved two-body KK, $K\pi$ statistical uncertainties by 40%
 - PID improvements (1.10x)
 - Tracking improvements (1.09x)
 - Selection cuts (1.13x)
 - Use of entire on/off resonance dataset (1.17)
 - Will have similar effect on the four-body K3 π analysis
 - No prior analysis to compare with
 - Given the excellent state of the BaBar dataset and reconstruction,
 - And the importance of charm mixing and CPV in the search for new physics,
 - We believe it is most important to pursue these analyses to the fullest extent possible with BaBar
 - As it may be some time before new data in these areas becomes available

Charm mixing: $D^0 \rightarrow K\pi\pi\pi$

Similar to 2007 BaBar Kπ discovery analysis Uses Kπππ mode More complex backgrounds Similar statistics B.R. x efficiency is approximately the same as for Kπ Improvements: Four-body decay gives better decay vertex measurement Using latest improvements in tracking and PID Using full, final BaBar dataset Possibility of > 5σ significance for mixing in this decay mode

Best to date is the 4.1 σ in *KK/K* π lifetime ratio result

K3pi plot goes here

$D^0 \rightarrow K\pi\pi\pi$ plot caption

Charm mixing summary

- Our long-time effort in BaBar is winding down
 - Started in 1995
- But not completely done yet
 - Would like to see the project through to the end
 - Ramp from about 20% of Cowan's time down to zero over next three years
 - Support BaBar efforts through the "steady analysis period"
 - Finish K 3π mixing
 - Possibly extend K3 π to include amplitude analysis
 - **D** Or work with other collaborators on Ks $\pi\pi\pi^0$ (e.g., U. of Cincinnati)
 - Contribute to BaBar/Belle legacy book effort
 - **D** Charm section of "Physics of the B-Factories"
 - See <u>http://www.slac.stanford.edu/xorg/BFLB/</u>

Extra slides

Extra slides

