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PERSPECTIVES

Machine Science

PHILOSOPHY OF SCIENCE

James Evans and Andrey Rzhetsky  

Soon, computers could generate many useful 

hypotheses with little help from humans.
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        S
cientists today cannot hope to manu-

ally track all of the published science 

relevant to their work. A cancer biolo-

gist, for instance, can fi nd more than 2 million 

relevant papers in the PubMed archive, more 

than 200 million Web pages with a Google 

search, and databases holding results from 

experiments that produce millions of giga-

bytes of data.

This explosion of knowledge is changing 

the landscape of science. Computers already 

play an important role in helping scientists 

store, manipulate, and analyze data. New 

capabilities, however, are extending the reach 

of computers from analysis to hypothesis. 

Drawing on approaches from artifi cial intel-

ligence, computer programs increasingly are 

able to integrate published knowledge with 

experimental data, search for patterns and 

logical relations, and enable new hypoth-

eses to emerge with little human interven-

tion. Scientists have used such computational 

approaches to repurpose drugs, functionally 

characterize genes, identify elements of cel-

lular biochemical pathways, and highlight 

essential breaches of logic and inconsistency 

in scientifi c understanding. We predict that 

within a decade, even more powerful tools 

will enable automated, high-volume hypoth-

esis generation to guide high-throughput 

experiments in biomedicine, chemistry, phys-

ics, and even the social sciences ( 1).

Proponents of data-driven science ( 2– 4) 

conjecture that hypotheses are obsolete: New 

knowledge will simply emerge from mechan-

ical application of algorithms that mine data 

for plausible patterns. This approach is attrac-

tive, but there are potential pitfalls. The dis-

covery of patterns from data alone is similar 

to the task faced by an explorer in an unfamil-

iar jungle, without a guide. With no sense of 

what is already known about the environment 

or its perils, she is likely to misclassify what 

she sees—fearing the intimidating but harm-

less snake; ignoring the tiny lethal frog.

Recent research demonstrates how sci-

entists can use computers to become better-

informed and more agile explorers. New 

computational tools can expand the pool of 

concepts and relations used for generating 

automated hypotheses by (i) drawing more 

from the vast corpus of published science, 

and (ii) synthesizing new higher- and lower-

order concepts and relations from the existing 

pool of knowledge. This approach can enable 

scientists studying a particular natural sys-

tem, such as a biochemical pathway, to iden-

tify and fi ll in missing pieces, and traverse 

reasoning chains much longer than those 

possible with the unaided mind. For example, 

researchers have used computation to increase 

the number of candidate genetic aberrations 

considered in synthesizing hypotheses about 

disease ( 5– 7). They have also increased the 

number of potential biological activities 

involved in describing new gene functions ( 8, 

 9) and ironed out past errors ( 10). Similarly, 

scientists have used computation to increase 

the potential number of proteins and metabo-

lites involved in biochemical networks, and 

to generate predictions about which locations 

in those networks could be altered to improve 

health ( 11) and to identify elements misiden-

tifi ed as participating in a network ( 12).

Merely increasing the pool of concepts 

and relations, however, would simply gener-

ate multitudes of low-quality hypotheses. Sci-

entists can profi tably restrict that multitude 

by using a selection process that draws on 

insights into the social, cultural, and cognitive 

production of science. For example, Swanson 

pioneered the ABC model of hypothesis gen-

eration, which focuses on hypotheses that 

cross boundaries between distinct scientifi c 

literatures. If concepts A and B are studied in 

one literature, and B and C in another, Swan-

son assumed transitivity to hypothesize that A 

implies C (see the fi gure and fi g. S1). He then 

demonstrated that novel A-to-C inferences 

were likely to be true, although unlikely to be 

arrived at via other means ( 13– 16). Through 

this approach, Swanson hypothesized that 

fi sh oil could lessen the symptoms of Ray-

naud’s blood disorder and that magnesium 

deficits are linked to migraine headaches. 

This heuristic relies on an implicit under-

standing of scientifi c communities and pub-

lishing norms. It assumes that unpublished 

ideas within a research community are less 

valuable than ideas that link seemingly unre-

lated communities. Within a subfi eld, scien-

tists are typically familiar with all of “their 

own” ideas, so unpublished connections more 

likely represent negative knowledge—super-

fi cially plausible ideas that participants know 

are wrong from experience. Unpublished 

ideas about subjects (such as the role of par-

ticular molecules or genes) that cross subfi eld 

boundaries, however, are much more likely to 

represent unasked questions. A recent analy-

sis of biomolecules common to several fi elds 

of biomedicine, for instance, suggests that 

many communities could profi t from gener-

ating predictions that bridge fi eld boundaries 

and link disparate properties of these mole-

cules or other scientifi c concepts. ( 17).

Automated expansion of concepts and 

relations across community boundaries is 

severely constrained by incompatibilities 

in the language used by different scientifi c 

communities ( 18,  19). Because subfields 

have distinct histories, they often use differ-

ent language to express the same concept, or 

similar terms to refer to unrelated entities. If 

researchers could computationally map these 

languages onto one another, as some are 

beginning to do with medical terminologies 

( 20), they could vastly increase the number 

of possible hypotheses. Mapping concepts 

across languages would highlight parallels 

in theories from different domains, as well 

as changes in meaning with time (semantic 

drift) and multiple meanings (polysemy). 

These differences could be computationally 

mined to identify novel conceptual linkages. 
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AB BC ABC

Logical leaps. Scientifi c knowledge and concepts can be represented as jigsaw puzzle pieces that, with the 
help of new computational tools, can be assembled into new hypotheses. In Swanson’s ABC model, if the 
literature from one scientifi c subfi eld includes two concepts (A, red, and B, yellow), and the literature from 
another subfi eld includes B and C (blue), then an analyst may computationally infer that A and C are directly 
or indirectly related, potentially leading to new hypotheses that cross subfi eld boundaries.
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By prioritizing hypotheses that contain con-

cepts spanning existing scientifi c theories, 

languages, and cultures, investigators could 

productively focus on the most novel ( 21).

Analysts can also increase the pool of con-

cepts and relations by computationally syn-

thesizing new concepts and relations from 

those previously published. Computers have 

been deployed to “coarse grain” or identify 

new, higher-order aggregates of established 

concepts within studies of biological path-

ways, medical syndromes, and social classes 

( 22). Scientists have also discovered new 

relations by identifying regular similarities 

between existing elements ( 23,  24). They 

have effi ciently constricted the vast number 

of possible new aggregates by focusing on 

those that share physical properties or pat-

terns, or integrate components of a broader 

system, such as a particular disease.

In the past, computational approaches 

have been more successful in small, well-

defi ned systems than in larger, less studied, 

or more complex ones. The explosion of data 

from high-throughput experiments, how-

ever, increasingly presents researchers with 

very complicated systems. Facing these data 

with questions equal in scale and complexity 

will be critical because, in the words of Mark 

Twain, “you can’t depend on your eyes when 

your imagination is out of focus” ( 25). 
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Carbonates and Martian Climate

PLANETARY SCIENCE

Ralph P. Harvey

The detection of large volumes of carbonates 

reasserts the importance of carbon dioxide 

in martian climate history.

        T
he case for global climate change on 

Mars is neither ambiguous nor argu-

able. Cold, dry, and dusty right now, 

the surface of Mars shows ancient fl uvial 

valley networks, catastrophic flood chan-

nels, sediment-fi lled basins, and many other 

features that require stable liquid water 

at the planet’s surface. Such observations 

from orbit ( 1) imply that ancient Mars was 

substantially warmer than it is today. The 

favored scenario to heat up a young Mars 

is greenhouse warming driven by a thick, 

primitive CO
2
-rich atmosphere of the kind 

thought common to all the terrestrial plan-

ets ( 2). Clearly, the greenhouse phase didn’t 

last long for Mars. As a result, almost every 

model for martian climate history includes 

an appreciable drawdown of CO
2
 by precipi-

tation of carbonates. However, only a small 

fraction of the carbonates predicted by this 

theory have been detected. On page 421 of 

this issue, Morris et al. ( 3) report the detec-

tion of ample carbonates dispersed within 

the subsurface, thereby strengthening argu-

ments that CO
2
 played a major role in the 

early martian climate system.

Carbon’s geochemical cycle, as origi-

nally modeled for Earth, involves interac-

tions between the atmosphere and the hydro-

sphere that can dramatically infl uence global 

climate. Atmospheric CO
2
 goes into solution 

in liquid water relatively easily and can stay 

there in cool conditions. This alone can draw 

down a large amount of CO
2
. Furthermore, 

the resulting fl uid, carbonic acid (H
2
CO

3
), 

reacts with the silicate minerals of the crust to 

weather the rock and release calcium, magne-

sium, and iron ions into the water. These ions 

can promote the precipitation of solid carbon-

ates, (Ca,Mg,Fe)CO
3
. Because carbonates 

remain stable under a great variety of near-

surface conditions within the crust, they offer 

an effective and convenient storage medium 

for sequestering CO
2
.

With the evidence for fl uvial activity on 

early (and only early) Mars, progressive “fi x-

ing” of atmospheric CO
2
 has been consistently 

favored by climate modelers. This theory ade-

quately explains why, for the fi rst billion years 

or so, Mars was warmed by an active green-

house strong enough to support abundant 

liquid water and an active hydrologic cycle. 

Given our understanding of the links among 

atmospheric CO
2
 levels, carbon sequestra-

tion, and greenhouse warming on Earth, the 

CO
2
 drawdown explanation for martian cli-

mate change seems rational. Unfortunately, 

this martian climate jigsaw puzzle is missing 

a key piece: The widespread and/or massive 

deposits of carbonate minerals are nowhere 

to be found. Earth-based and orbital spectro-

scopic studies suggest at best an upper limit of 

a few percent within observable surface mate-

rials, around 20 to 30% of the amount needed 

for the accepted climate models ( 4,  5).

The result has been a cottage industry in 

explanations as to why we don’t see massive 

carbonate on Mars ( 6,  7). These explanations 

have two prominent themes. First is that our 

base-level assumption of an early martian 

climate primarily controlled by atmospheric 

CO
2
 is too simplistic, either because other 

important chemical species were ignored or 

because the atmosphere simply never had the 

required mass. Certainly the former is true. 

Landers, rovers, and orbiters have directly 

detected an abundance of sulfate-dominated 

deposits, offering clear evidence that sul-

fur species played a role in the early martian 

climate ( 8). Like CO
2
, atmospheric SO

2
 is a 

greenhouse gas whose complex geochemical 

cycle includes dissolution into surface waters, 

acid weathering of surface rocks, and precipi-

tation as relatively stable solids ( 9). CO
2
 and 

SO
2
 differ in stability and solubility under 

changing conditions of pH, pressure, and tem-
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