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Emergent complex neural dynamics
Dante R. Chialvo1,2*

A large repertoire of spatiotemporal activity patterns in the brain is the basis for adaptive behaviour. Understanding the
mechanism by which the brain’s hundred billion neurons and hundred trillion synapses manage to produce such a range of
cortical configurations in a flexible manner remains a fundamental problem in neuroscience. One plausible solution is the
involvement of universal mechanisms of emergent complex phenomena evident in dynamical systems poised near a critical
point of a second-order phase transition. We review recent theoretical and empirical results supporting the notion that the
brain is naturally poised near criticality, as well as its implications for better understanding of the brain.

Understanding the brain is among the most challenging
problems to which a physicist can be attracted. As a system
with an astronomical number of elements, each one known

to have plenty of nonlinearities, the brain exhibits collective
dynamics that in many aspects resemble some of the classic
problems well studied in statistical physics. The contradiction,
and the provoking point in these notes, is that only a minority
of the publications in the field today are concerned with the
understanding of the brain dynamics as a collective process. To the
contrary, the great majority of the work explains the brain through
explicit or implicit connectionist paradigms. In our opinion there
is a need to reflect and recognize to what degree these collectivist–
connectionist views implymore than just a semantic difference, and
that its adequate resolution holds the key to resolve some of the
more puzzling questions about the brain. We review key results
on emergent complex neural dynamics over the past few years.
From the outset it should be noted that the intentionally provoking
nature of these notes naturally induces a strong bias regarding cited
publications; consequently this is neither a fair, nor historically
correct, exhaustive or updated review of the relevant literature.
Another cautionary note is that, being a subject at the fringe of
disciplines, physicists and biologists alike will encounter boring
passages on their most familiar topics. Nevertheless, for the sake of
clarity, and with the forgiveness of the readers, we will proceed to
(even excessively) define each issue at hand.

What are the issues?
Understanding human behaviour and cognition requires the de-
scription of the laws of the underlying neural collective phenomena,
the patterns of spatiotemporal brain activity. Formal approaches
to study collective phenomena are one of the classical topics at
the centre of statistical physics, with recent new and successful
applications in diverse areas such as genetics, ecology, computer
science, social and economic settings1–13. Although in all these fields
there is a clear transfer ofmethods and ideas from statistical physics,
a similar flow has only recently started to impact neuroscience.

The main issue addressed here belongs to the ‘under-the-rug’
class of problems in the field, namely, how the very large
conglomerate of interconnected neurons produces a repertoire of
given behaviours in a flexible and self-organized way. Although
colloquial explanations abound, when detailed models are
constructed to account for this, each of the three emphasized
components is systematically violated. Either (1) the model is a
low-dimensional version of the neural structure of interest or
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(2) it produces a single behaviour (hardwired in the system), and
consequently (3) it cannot flexibly do anything else. It is only by
arbitrarily changing the neuronal connections that most of the
current models can play a repertoire of behaviours. This requires a
kind of supplementary brain holding the key to which connections
need to be rewired. Of course, no proof of such a supplementary
brain has been offered, and this is the question that is screaming to
be answered and seldom is even being asked.

Approaches to this problem, for a variety of historical and
conceptual reasons, are still drawn from connectionist paradigms,
which restrict the dynamics to be generated by circuits, and
consequently funnel our efforts in the same sterile direction.
Although collective properties have beenmentioned for a long time,
their relevance remains secondary to most of us. Even Hopfield’s
call14 three decades ago (in his seminal ‘Neural networks and
physical systems with emergent collective computational abilities’
paper) seems to have been forgotten, perhaps displaced by the
appeal and initial excitement of computational ideas. ‘‘Much
of the architecture of regions of the brains of higher animals
must be made from a proliferation of simple local circuits
with well-defined functions. The bridge between simple circuits
and the complex computational properties of higher nervous
systems may be the spontaneous emergence of new computational
capabilities from the collective behaviour of large numbers of simple
processing elements’’.

Emergence
It is accepted that almost all macroscopic phenomena — from
superconductivity to gravity and from economics to photosynthe-
sis — are the consequence of an underlying collective dynamics of
their microscopic components. In neuroscience, it is the macro-
scopic behaviour (cognitive, emotional, motor and so on) aspect
that will be ultimately understood as the emergent phenomena of
an underlying neuronal collective. However, the fact that neurons
are nonlinear elementsmakes such understanding far from straight-
forward. It would be fair to say that although the problem is cast
in terms most familiar to biology the solution is written in terms
very familiar to physics.

Let us recall what emergent phenomena are. Emergence refers to
the unexpected collective spatiotemporal patterns exhibited by large
complex systems. In this context, ‘unexpected’ shows our inability
(mathematical and otherwise) to derive such emergent patterns
from the equations describing the dynamics of the individual parts
of the system. As discussed at length elsewhere1,15, complex systems
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Box 1 | What is special about being critical?

Given the claims that brain dynamics can be critical, let us recall
what is special about such a state. The generality of the scenario
of ferromagnetic–paramagnetic phase transition is used, without
implying that the brain would reach criticality in this way. As an
ironmagnet is heated, themagnetization decreases until it reaches
zero beyond a critical temperatureTc. Individual spin orientations
are, at high temperatures, changing continuously in small groups.
As a consequence, the mean magnetization, expressing the
collective behaviour, vanishes. At low temperature the system will
be very ordered, exhibiting large domains of equally oriented
spins, a state with negligible variability over time. In between
these two homogeneous states, at the critical temperature Tc, the
system exhibits very different properties in both time and space.
The temporal fluctuations of the magnetization are known to

be scale invariant. Similarly, the spatial distribution of correlated
spins shows long-range (power-law) correlations. It is only close
enough to Tc that large correlated structures (up to the size of
the system) emerge, even though interactions are with nearest-
neighbour elements. In addition, the largest fluctuations in the
magnetization are observed at Tc. At this point the system is
at the highest susceptibility, a single spin perturbation has a
small but finite chance to start an avalanche that reshapes the
entire system state, something unthinkable in a non-critical state.
Many of these dynamical properties, once properly translated
to neural terms, exhibit striking analogies to brain dynamics.
Neuromodulators, which are known to alter brain states acting
globally over non-specific targets, could be thought of as control
parameters, as is temperature in this case.

T < Tc
T > TcT ∼ Tc

Subcritical Critical Supercritical

Figure B1 | Complex is critical. Three snapshots of the spin configurations at one moment in time for three temperatures (subcritical, critical and
supercritical) from numerical simulations of the two-dimensional Ising model. Only at the critical temperature do systems exhibiting a second-order
phase transition show the highly heterogeneous correlated domains seen, whereas both sub- and supercritical conditions result in homogeneous
states. Reproduced from ref. 80, © 2007 AIP.

are usually large conglomerates of interacting elements, each one
exhibiting some sort of nonlinear dynamics. Without entering into
details, it is also known that the interaction can also be indirect,
for instance through some mean field. Usually energy enters the
system, thus some sort of driving is present. The three emphasized
features (that is, large number of interacting nonlinear elements)
are necessary, although not sufficient, conditions for a system to
exhibit emergent complex behaviour at some point.

As long as the dynamics of each individual element is nonlinear,
other details are not important1,16; for instance, they can be humans,
driven by food and other energy resources, from which some
collective political or social structure eventually arises. Whatever
the type of structure that emerges, it is unlikely to appear if one of
the three above-emphasized properties is absent. For instance, it is
well established that a small number of isolated linear elements are
unable to produce unexpected behaviour (indeed this is the case in
which everything can bemathematically anticipated).

Spontaneous brain activity is complex
It is evident, from the very early electrical recordings a century ago,
that the brain is spontaneously active, even in the absence of external
inputs. However obvious this observation could seem, it was only
recently that the dynamical features of the spontaneous brain state
started to be studied in any significant way.

Recent work on brain rhythms at small and large brain scales
showed that spontaneous healthy brain dynamics is not composed
by completely random activity patterns or by periodic oscillations17.
Careful analysis of the statistical properties of neural dynamics
under no explicit inputs has identified complex patterns of activity

previously ignored as background noise dynamics. The fact is that
brain activity is always essentially arrhythmic regardless of how it
is monitored, whether as electrical activity in the scalp (electroen-
cephalography), by techniques of functional magnetic resonance
imaging (fMRI), in the synchronization of oscillatory activity18,19 or
in the statistical features of local field potential peaks20.

It has been pointed out repeatedly21–25 that, under healthy
conditions, no brain temporal scale takes primacy over average,
resulting in power spectral densities decaying as ‘1/f noise’.
Behaviour, the ultimate interface between brain dynamics and
the environment, also exhibits scale-invariant features as shown
in human cognition26–28 and human motion29 as well as animal
motion30. The origin of the brain scale-free dynamics was not
adequately investigated until recently, probably (and paradoxically)
owing to the ubiquity of scale invariance in nature1. Currently,
there is increasing interest and the potential significance of a
renewed interpretation of the brain spontaneous patterns is at
least twofold. Its presence provides important clues about brain
circuit organization, in the sense that our previous ideas cannot
easily accommodate these new findings. Also, the class of complex
dynamics observed seems to provide the brain with previously
unrecognized robust properties. These aspects will be reviewed, on
two different scales, in the next sections.

Emergent complexity is always critical
The commonality of scale-free dynamics in the brain naturally
leads us to ask what physics knows about very general mechanisms
able to produce such dynamics. Attempts to explain and generate
nature’s non-uniformity have included several mathematical
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Box 2 | Why do we need a brain at all?

It is self-evident that the brains we see today are those that
inherited an edge useful to survive. In light of this, how consistent
with Darwinian constraints could it be to suggest that the brain
should evolve to be near a critical point? The answer, in short,
is that brains should be critical because the world in which they
must survive is to some degree critical as well. Let us see the
alternatives: in a subcritical world, everything would be simple
and uniform (as in the left panel of Box 1) and there would be
nothing to learn; a brain would be completely superfluous. At
the other extreme, in a supercritical world, everything would be
changing continuously (as in the right panel of Box 1); under
these circumstances there would not be sufficient regularity to
make learning possible or valuable. Thus, brains are only needed
to navigate a complex, critical world, where surprising events still
have a finite chance of occurring. In other words, animals need
a brain because the world is critical1,15,31,37. Furthermore, a brain

not only has to remember, but also has to forget and adapt. In
a subcritical brain, memories would be frozen. In a supercritical
brain, patterns change continuously so no long-term memory
would be possible. To be highly susceptible, the brain itself has
to be in an in-between, critical state.

Which generic features of systems at criticality should be
expected in brain experiments? 1. At relatively large scale: cortical
long-range correlations in space and time, correlation length
divergence; near-zeromagnetization or, equivalently, the presence
of anticorrelated cortical states. 2. At relatively small scale: cortical
circuits exhibit neuronal avalanches, cascades of activity obeying
inverse-power-law statistics as well as long-range correlations. 3.
At behavioural level: adaptive human behaviour should be bursty,
seeming unstable, as it is always at the ‘edge of failure’. Life-long
learning continuously ‘raises the bar’ to more challenging tasks,
making performance critical as well.
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Figure 1 |Neuronal avalanches are complex. Size distribution of neuronal
avalanches in mature cortical cultured networks follows a power law with
an exponent close to 3/2 (dashed line) and exhibits finite-size scaling. The
relative probability of observing an avalanche covering a given number of
electrodes is shown for three sets of grid sizes (insets with n= 15, 30 or 60
sensing electrodes, equally spaced at 200 µm). The statistics is taken from
data recordings lasting a total of 70 h and accumulating 58,000
(±55,000) avalanches per hour (mean± s.d.). Reproduced from ref. 39, ©
2003 Society for Neuroscience.

models and recipes, but few succeeded in creating complexity
without embedding the equations with complexity. The important
point is that including the complexity in themodelwill only result in
a simulation of the real system, without entailing any understanding
of complexity. The most significant efforts have been those
aimed at discovering the conditions in which something complex
emerges from the interaction of the constituting non-complex
elements1,31. Initial inspiration was drawn from work in the field
of phase transitions and critical phenomena (see Box 1). Precisely,
one of the novelties of critical phenomena is the fact that out
of the short-range interaction of simple elements long-range
spatiotemporal correlated patterns eventually emerge. As such,
critical dynamics have been documented in species evolution1,
ant collective foraging32,33 and swarm models34, bacterial
populations35, traffic flow in highways1 and on the Internet10,
macroeconomic dynamics7, forest fires8, rainfall dynamics11–13 and
flock formation36. The same rationale led to the conjecture1,37,38 that

the complexity of brain dynamics was also just another signature of
an underlying critical process. As the largest number of metastable
states exists at a point near the transition, the brain can then be
accessing the largest repertoire of behaviours in a flexible way. This
view claimed that the most fundamental properties of the brain
only are possible staying close to this critical instability (see Box 2),
independently of how such a state is reached ormaintained.

Small scale: cortical quakes
Beggs and Plenz39,40 reported the first convincing evidence that
neuronal populations could exhibit critical dynamics. They were
first to describe a type of electrical activity for the brain cortex
called ‘neuronal avalanches’. These collective neuronal patterns sit
halfway in between two previously well-known cortical patterns: the
oscillatory or wavelike highly coherent activity on one side and the
asynchronous and incoherent spiking on the other. Typically, each
avalanche engages a variable number of neurons. What is peculiar
is the statistical pattern that these avalanches follow. On average, we
observe many more small avalanches than large ones (for example,
each neuronal avalanche has a large chance to engage only a few
neurons and a very low probability to spread and activate the whole
cortical tissue (see Fig. 1)). In these experiments, a number of
properties suggestive of criticality were estimated. This included a
scale-free distribution of avalanche sizes following an inverse power
law with an exponent close to 3/2, which agrees exactly with the
theoretical expectation for a critical branching process, previously
worked out by Zapperi and colleagues41. The avalanche lifetime
statistics also followed an inverse power law with an exponent
close to two, which agrees with the theoretical expectation for a
cascade of activity41–43.

The initial scale invariance for the avalanches has already been
replicated44,45. Furthermore, similar findings have been reported
in a wide variety of diverse settings, including in vivo monkey
cortex46 and adult cats47. In addition, the functional significance of
the avalanches was highlighted by the fact that they were observed
during the earliest time of the development of superficial layers
in the cortex48,49 requiring the presence of a neuro-modulator
(dopamine) and a certain balance between excitatory and inhibitory
transmission39,48,49.

The precise neuronal mechanisms leading to the observed
scale-free avalanches is as yet uncertain, despite modelling efforts
underway (see Box 3), because similar statistics can be generated
by several mechanisms other than critical dynamics50. However,
no convincing alternative experimental analysis or evidence
has been presented up to now. Numerical evidence recently
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Box 3 | Models.

At small scale, explicit models have been already presented in
which criticality can be self-organized either by some form of
Hebbian learning81,82 or by the inclusion of activity-dependent
depressive synapses83. Some previously unknown properties en-
dowed by criticality have also been studied, such as the widest
dynamical range and optimal sensitivity to sensory stimuli shown
by Kinouchi and Copelli84. Concerning learning, de Arcangelis
and Herrmann85, extending the earlier network model by Bak
and Chialvo37,38, found recently that avalanches of activity are
able to shape a network with complex connectivity as well as
learning logical rules. A handicap of these models is the absence

of ongoing activity, an important brain feature. This aspect is
covered by networks of Marro et al.86 that show spontaneous
unstable dynamics and non-equilibrium phases in which the
global activity wanders irregularly among attractors resulting in
1/f noise as the system falls into the most irregular behaviour.
At large scale, although brain data sets with unprecedented spa-
tiotemporal resolution are now available, there is no model able
to mimic a phase transition at such a brain scale. Nevertheless,
the challenge to construct data-driven models at this level is
being taken, as shown by recent efforts87 to model fMRI rest-
ing state.

Visual Auditory Sensorimotor Default mode Control Dorsal attention

Figure 2 | Large-scale emergent brain networks. The analysis of interactions during spontaneous human-brain spatiotemporal patterns reveals emergent
networks. The top sequence of images shows in red/blue the increases/decreases over the mean fMRI BOLD during 4 min of consecutive brain resting
(single-subject consecutive data, starting from the top left corner, where each row is 1 min, and images are taken at 2.5 s intervals). The bottom images are
the results of computing linear correlations between the activity of a small region within the networks of interest and the rest of the brain (stronger
correlations indicated with brightest colours). These networks correspond to the six main systems in the brain: visual, auditory, sensorimotor, default
mode, executive control and dorsal attention (from Chialvo, unpublished data). The brain standard Montreal Neurological Institute coordinates for the
slices represented are z= 18 for the top sequence and z=0,8,44,24,26,44 for the bottom images, left to right.

reported51 suggesting non-critical alternatives gives inverse-power-
law exponents one order of magnitude larger (>20) than the 3/2
experimentally observed.

The stumbling block of the discussions concerning the origin of
the avalanches has been the limitation to replicate only probability
densities, either of sizes or durations. However, the debate can be
placed in amore rigorous context if other invariants are analysed. In
this direction, recent results52 provided new experimental evidence
for five fundamental properties of neuronal avalanches consistent
with criticality. These were (1) timescale separation between the
dynamics of the triggering event and the avalanche itself (this is
demonstrated by the fact that the inverse-power-law density of
avalanche sizes and lifetimes remain invariant to slow driving),
(2) stationary avalanche size statistics despite wide avalanching-
rate fluctuations, excluding non-homogeneous Poisson processes,
(3) the avalanche probabilities preceding and following main
avalanches obey Omori’s law for earthquakes, (4) the average size
of avalanches following a main avalanche decays as an inverse
power law and (5) avalanches spread spatially on a fractal. Overall,
these results support the notion that neuronal avalanches are the
manifestation of criticality in the brain and exclude, in some cases
explicitly, themajority of themechanisms discussed in the literature
as alternatives to criticality.

Large scale
Probably the first report concerning mesoscopic patterns in
connection with behaviour was the brain imaging analysis
by Kelso et al.53, pursuing their previous observation that

human hand movements exhibit abrupt phase transitions for
increasing cycling frequency54. They were able to show, using
magneto-encephalographic techniques, spontaneous transitions
in neuromagnetic field patterns in the human brain. These
transitions happened at a critical value of a systematically
varied behavioural parameter supporting ‘‘the thesis that the
brain is a pattern forming system that can switch flexibly from
one coherent state to another’’53. Similar considerations and
concerns were expressed in these early days, by commenting
that: ‘‘In summary, higher brain functions in humans such
as perception, learning and goal directed movement are often
hypothesized to depend on the collective dynamics of large
numbers of interacting neurons distributed throughout the cortex.
But typical signs of cooperative phenomena are not accessible
through single neuron investigations. On the other hand, from
studies of non-equilibrium systems it is well known that at
critical points, spatial and temporal patterns form in a so-called
self-organized fashion’’53.

A large body of work needs to be omitted here to be able to
fast forward to present day, when it is recognized that the brain is
spontaneously creating and reshaping complex functional networks
of correlated dynamics responding to the neural traffic between
regions. These networks had been recently studied, using functional
magnetic resonance imaging in humans. The flurry of activity in this
area could be well gauged by the words chosen by the author55 of a
recent review stating: ‘‘Commenting on the wealth of existing data
on anatomical and functional cortical networks organization may
seem like ‘carrying coals to Newcastle’.’’ Extensive reviews56,57 cover
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Figure 3 | Complex networks derived from the brain fMRI data mimic those from the Ising model only at the critical temperature. Plots correspond to the
degree (k) distribution of the network derived from the fMRI brain resting data (bottom panel) and from the Ising model (top three panels) at temperature
T= 2, T= 2.3 and T= 3, for different values of average degrees. Reproduced from ref. 67, © 2009 APS.

the statistical physics approaches that are increasingly being use to
analyse this large body of complex data.

For the purpose of this review, it is relevant to limit our
attention to the study of spontaneous ‘resting’ fMRI dynamics58,59.
Brain ‘rest’ is defined — more or less unsuccessfully — as the
state in which there is no explicit brain input or output, or
overt external stimulation. The subject is scanned while lying
with eyes closed, and instructed to avoid falling asleep. Each of
the thousands of signals (called BOLD, for blood-oxygenation-
level dependent) obtained from these experiments reflects the
amount of neural activity on each small region of typically a
dozen cubic millimetres, enabling us to map the entire activity
of the brain. An example is presented as a sequence in Fig. 2,
which shows for graphical purposes only one of the many slices
that are recorded. From careful visual inspection of the data it
already seems that there are important spatiotemporal correlations,
resembling the image of passing clouds. The fascinating point
here is that from rather simple linear cross-correlations of the
BOLD signals a few collective groups emerge. This is shown by
the clusters in the bottom panels, which were found to closely
match the same regions responding to a wide variety of different
activation conditions58,59. Thus, at rest the ‘passing clouds’ (that is,
the collective spatiotemporal dynamics) visit the same brain regions
that are activated during any given active behaviour. The relevance
of these findings is further highlighted by the fact that these
networks are identifiable with great consistency across subjects60–62,
even during sleep63 or anaesthesia64.

A natural question arising at this point is what kind of known
dynamical scenario corresponds to these brain resting patterns.
This was tackled initially in three recent reports. In the first,
Kitzbichler et al.65 analysed fMRI and magnetoencephalography
data recorded from normal volunteers at resting state using phase
synchronization between diverse spatial locations. They reported a
scale-invariant distribution for the length of time that two brain
locations on average remained locked. This distribution was also
found in the Ising and theKuramotomodel66 at the critical state.

In the second report, Fraiman et al.67 compared the paradigmatic
two-dimensional Isingmodel at various temperatures with the rest-
ing brain data. Correlation networks were prepared by computing
cross-correlation between the Ising states at all lattice points and
placing links between those points (nodes) with correlation larger
than a certain threshold. Similar computations were conducted
for the brain fMRI data. After comparing the most descriptive
networks’ properties, the authors concluded that, although the Ising
networks at sub- and supercritical temperatures greatly differ from
the brain networks, those derived at the critical temperature are
‘indistinguishable from each other’. The example in Fig. 3 shows
one of the properties compared, the distribution of the number
of links (that is, degree) for these networks. Notice the fat tails
in the brain data (reported earlier in refs 68,69), which are only
replicated when the Ising model is posed at critical temperature.
In addition, calculation of the fraction of sites with positive and
negative correlations (a variable related to magnetization else-
where) showed values close to one, in agreement with previous
results in ref. 70, which suggested this balance as an index of
healthy brain function at rest. Overall, these results show that
networks derived from correlations of fMRI signals in humanbrains
are indistinguishable from networks extracted from Ising models
at critical temperature.

The third effort directed to shed light on the mechanism
underlying resting fMRI dynamics is from Expert et al.71, who
examined the two-point correlation function after successive steps
in spatial coarse graining, a renormalization technique widely used
in critical phenomena. Their results show spatial self-similarity,
which in addition to temporal 1/f frequency behaviour of the
power spectrum is indicative of critical dynamics.

Since the initial fMRI work68,69,72 progress has been made to use
these approaches to evaluate the integrity of brain function under
normal73 and pathological conditions74,75 including Alzheimer’s76,
schizophrenia77 and epilepsy78,79. Even the impact of long-enduring
chronic pain seems to alter brain dynamics beyond the feeling of
pain itself 70, thus motivating further work to better understand
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the fundamental mechanisms behind the brain resting-state
large-scale organization.

Summary and outlook
We have reviewed recent key results of emergent collective complex
neural dynamics. It is important to note that, at the present time, no
theory (in the sense of the initial paragraphs) can comprehensibly
accommodate these results without invoking criticality. One
motivation for neuroscience to look at the physical laws governing
other complex systems is the hope that universality will give the field
an edge. Instead of searching for ad hoc laws for the brain, under the
pretence that biology is special, a good understanding of universal
laws might very well provide a breakthrough, because brains must
share some of the fundamental laws of nature. A main difference
between the preceding decade and now is that, as presented in this
review, there are spatiotemporal brain data with which to confront
theories: a playgroundwaiting for physicists to take up the challenge
of explaining the underlyingmechanism of the collective.
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