Commit in lcsim/src/org/lcsim/recon/tracking/digitization/sisim on MAIN
DigitalReadoutChip.java+461added 1.1
Commit new digital readout chip for digital pixel/strip readout

lcsim/src/org/lcsim/recon/tracking/digitization/sisim
DigitalReadoutChip.java added at 1.1
diff -N DigitalReadoutChip.java
--- /dev/null	1 Jan 1970 00:00:00 -0000
+++ DigitalReadoutChip.java	19 Nov 2010 13:05:38 -0000	1.1
@@ -0,0 +1,461 @@
+/*
+ * Class DigitalReadoutChip
+ */
+package org.lcsim.recon.tracking.digitization.sisim;
+
+import java.util.ArrayList;
+import java.util.HashSet;
+import java.util.List;
+import java.util.Map.Entry;
+import java.util.Random;
+import java.util.Set;
+import java.util.SortedMap;
+import java.util.TreeMap;
+import org.apache.commons.math.MathException;
+import org.apache.commons.math.distribution.BinomialDistribution;
+import org.apache.commons.math.distribution.BinomialDistributionImpl;
+import org.apache.commons.math.distribution.NormalDistribution;
+import org.apache.commons.math.distribution.NormalDistributionImpl;
+import org.lcsim.detector.tracker.silicon.SiSensorElectrodes;
+import org.lcsim.event.RawTrackerHit;
+import org.lcsim.math.probability.Erf;
+import org.lcsim.recon.tracking.digitization.sisim.ReadoutChip.ReadoutChannel;
+
+/**
+ * Digital readout chip class.  This class supports the minimal functions
+ * expected of a digital readout chip.  The charge on a strip/pixel is digitized
+ * to give a specified ADC value if the charge is above the noise threshold.
+ * Noise is added to strips/pixels with charge, and random noise hits are generated
+ * as well.  Methods are provided to decode the charge and time (although the
+ * current implementation always returns a time of 0).
+ *
+ * @author Richard Partridge
+ */
+public class DigitalReadoutChip implements ReadoutChip {
+
+    private static Random _random = new Random();
+    private static NormalDistribution _gaussian = new NormalDistributionImpl(0.0, 1.0);
+    private static BinomialDistribution _binomial = new BinomialDistributionImpl(1, 1);
+    private double _noise_threshold;
+    private double _neighbor_threshold;
+    private DigitalChannel _channel = new DigitalChannel();
+
+    /** Creates a new instance of DigitalReadoutChip */
+    public DigitalReadoutChip() {
+    }
+
+    /**
+     * Set the noise intercept (i.e., the noise for 0 strip/pixel capacitance).
+     * Units are electrons of noise.
+     *
+     * @param noise_intercept noise for 0 capacitance
+     */
+    public void setNoiseIntercept(double noise_intercept) {
+        _channel.setNoiseIntercept(noise_intercept);
+    }
+
+    /**
+     * Set the noise slope (i.e., the proportionality between noise and capacitance).
+     * Units are electrons of noise per fF of capacitance.
+     *
+     * @param noise_slope noise slope per unit capacitance
+     */
+    public void setNoiseSlope(double noise_slope) {
+        _channel.setNoiseSlope(noise_slope);
+    }
+
+    /**
+     * Set the threshold for reading out a channel.  Units are electrons.
+     * 
+     * @param noise_threshold
+     */
+    public void setNoiseThreshold(double noise_threshold) {
+        _noise_threshold = noise_threshold;
+        _channel.setNoiseThreshold(noise_threshold);
+    }
+
+    /**
+     * Set the threshold for reading a channel if it's neighbor is
+     * above the noise threshold.  Units are electrons.
+     *
+     * @param neighbor_threshold
+     */
+    public void setNeighborThreshold(double neighbor_threshold) {
+        _neighbor_threshold = neighbor_threshold;
+    }
+
+    /**
+     * Set the ADC output value for a hit.
+     *
+     * @param adc_for_hit
+     */
+    public void setConversionConstant(int adc_for_hit) {
+        _channel.setConversionConstant(adc_for_hit);
+    }
+
+    /**
+     * Return the DigitalChannel associated with a given channel number.
+     * For the digital readout, there is a single instance of DigitalChannel
+     * and thus the channel number is ignored.
+     *
+     * @param channel_number channel number
+     * @return associated DigitalChannel
+     */
+    public DigitalChannel getChannel(int channel_number) {
+        return _channel;
+    }
+
+    /**
+     * Given a collection of electrode data (i.e., charge on strips/pixels),
+     * return a map associating the channel and it's list of raw data.
+     *
+     * @param data  electrode data from the charge distribution
+     * @param electrodes  strip or pixel electrodes
+     * @return  map containing the ADC counts for this sensor
+     */
+    public SortedMap<Integer, List<Integer>> readout(SiElectrodeDataCollection data, SiSensorElectrodes electrodes) {
+
+        //  If there is no electrode data for this readout chip,  create an empty
+        //  electrode data collection
+        if (data == null) {
+            data = new SiElectrodeDataCollection();
+        }
+
+        //  Add noise hits to the electrode data collection
+        addNoise(data, electrodes);
+
+        //  return the digitized charge data as a map that associates a hit
+        //  channel with a list of raw data for the channel
+        return digitize(data, electrodes);
+    }
+
+    /**
+     * Decode the hit charge stored in the RawTrackerHit.  Since this method
+     * isn't well defined for digital readout, return the noise threshold if
+     * there is a hit.
+     *
+     * @param hit raw hit
+     * @return hit pseudo-charge in units of electrons
+     */
+    public double decodeCharge(RawTrackerHit hit) {
+
+        //  Get the ADC value
+        int adc = hit.getADCValues()[0];
+        
+        //  If there is a hit (i.e., adc > 0) return the charge as being the
+        //  value of the noise threshold, otherwise return 0
+        if (adc > 0) return _noise_threshold;
+        else return 0.;
+    }
+
+    /**
+     * Decode the hit time.  Currently, the digital readout chip ignores the
+     * hit time and returns 0.
+     *
+     * @param hit raw hit data
+     * @return hit time
+     */
+    public int decodeTime(RawTrackerHit hit) {
+        return 0;
+    }
+
+    /**
+     * Digitizes the hit channels in a SiElectrodeDataCollection.
+     *
+     * The SiElectrodeDataCollection is a map that associates a given channel with
+     * it's SiElectrodeData.  The SiElectrodeData encapsulates the deposited charge
+     * on an strip/pixel and any associated SimTrackerHits.
+     *
+     * The output of this class is a map that associates a channel number with
+     * a list of raw data
+     *
+     * @param data electrode data collection
+     * @return map associating channels with a list of raw data
+     */
+    private SortedMap<Integer, List<Integer>> digitize(SiElectrodeDataCollection data,
+            SiSensorElectrodes electrodes) {
+
+        //  Create the map that associates a given sensor channel with it's list of raw data
+        SortedMap<Integer, List<Integer>> chip_data = new TreeMap<Integer, List<Integer>>();
+
+        //  Loop over the channels contained in the SiElectrodeDataCollection
+        for (Integer channel : data.keySet()) {
+
+            //  Fetch the electrode data for this channel
+            SiElectrodeData eldata = data.get(channel);
+
+            //  Get the charge in units of electrons
+            double charge = eldata.getCharge();
+
+            //  If the charge is below the neighbor threshold, don't digitize it
+            if (charge < _neighbor_threshold) continue;
+
+            //  If charge is between neighbor and noise thresholds, check it's neighbors
+            if (charge < _noise_threshold) {
+
+                //  Loop over neighbors and look for a neighbor with charge above the noise
+                boolean nbrhit = false;
+                for (Integer nbr : electrodes.getNearestNeighborCells(channel)) {
+
+                    //  See if we have electrode data for this neighbor
+                    SiElectrodeData nbrdata = data.get(nbr);
+                    if (nbrdata == null) continue;
+
+                    //  See if we have found a neigbor above the noise threshold
+                    if (nbrdata.getCharge() >= _noise_threshold) {
+                        nbrhit = true;
+                        break;
+                    }
+                }
+                
+                //  If there were no neighbor channels above threshold, don't digitize it
+                if (!nbrhit) continue;
+            }
+
+            //  Calculate the ADC value for this channel and make sure it is positive
+            int adc = getChannel(channel).computeAdcValue(charge);
+            if (adc <= 0) {
+                continue;
+            }
+
+            //  Create a list containing the adc value - for the digital readout
+            //  there is only 1 word of raw data
+            List<Integer> channel_data = new ArrayList<Integer>();
+            channel_data.add(adc);
+
+            //  Save the list of raw data in the chip_data map
+            chip_data.put(channel, channel_data);
+        }
+
+        return chip_data;
+    }
+
+    /**
+     * Add noise hits for this readout chip
+     *
+     * @param data electrode data collection
+     * @param electrodes strip or pixel electrodes
+     */
+    private void addNoise(SiElectrodeDataCollection data, SiSensorElectrodes electrodes) {
+
+        //  First add noise to the strips/pixels in the SiElectrodeDataCollection
+        //  Loop over the entries in the SiElectrodeDataCollection (which extends TreeMap)
+        for (Entry datum : data.entrySet()) {
+
+            //  Get the channel number and electrode data for this entry
+            int channel = (Integer) datum.getKey();
+            SiElectrodeData eldata = (SiElectrodeData) datum.getValue();
+
+            //  Get the RMS noise for this channel in units of electrons
+            double noise = getChannel(channel).computeNoise(electrodes.getCapacitance(channel));
+
+            //  Add readout noise to the deposited charge
+            int noise_charge = (int) Math.round(_random.nextGaussian() * noise);
+            eldata.addCharge(noise_charge);
+        }
+
+        //  Add random noise hits where the noise charge exceeds the noise threshold
+
+        //  Find the number of pixels/strips that are not currently hit
+        int nelectrodes = electrodes.getNCells();
+        int nelectrodes_empty = nelectrodes - data.size();
+
+        //  Get the noise threshold in units of the noise charge
+        double noiseRMS = _channel.computeNoise(electrodes.getCapacitance());
+        double normalized_integration_limit = _noise_threshold / noiseRMS;
+
+        //  Calculate how many channels should get noise hits
+        double integral = Erf.phic(normalized_integration_limit);
+        int nchannels_throw = drawBinomial(nelectrodes_empty, integral);
+
+        // Now throw Gaussian randoms above the seed threshold and put signals on unoccupied channels
+        for (int ithrow = 0; ithrow < nchannels_throw; ithrow++) {
+            // Throw to get a channel number
+            int channel = _random.nextInt(nelectrodes);
+            while (data.keySet().contains(channel)) {
+                channel = _random.nextInt(nelectrodes);
+            }
+
+            //  Calculate the noise for this channel in units of electrons
+            double noise = getChannel(channel).computeNoise(electrodes.getCapacitance(channel));
+
+            // Throw Gaussian above threshold
+            int charge = (int) Math.round(drawGaussianAboveThreshold(integral) * noise);
+            data.add(channel, new SiElectrodeData(charge));
+        }
+
+        // Now throw to lower threshold on channels that neighbor hits until we are exhausted
+        //-----------------------------------------------------------------------------------
+        nchannels_throw = 1;
+        while (nchannels_throw > 0) {
+            //            System.out.println("\n"+"Throw nieghbors...");
+
+            // Get neighbor channels
+            Set<Integer> neighbors = new HashSet<Integer>();
+            for (int channel : data.keySet()) {
+                neighbors.addAll(electrodes.getNearestNeighborCells(channel));
+            }
+            neighbors.removeAll(data.keySet());
+
+            nelectrodes_empty = neighbors.size();
+
+            //  Get the noise threshold in units of the noise charge
+            normalized_integration_limit = _neighbor_threshold / noiseRMS;
+
+            integral = Erf.phic(normalized_integration_limit);
+            nchannels_throw = drawBinomial(nelectrodes_empty, integral);
+
+            // Now throw Gaussian randoms above a threshold and put signals on unoccupied channels
+            for (int ithrow = 0; ithrow < nchannels_throw; ithrow++) {
+                // Throw to get a channel number
+                List<Integer> neighbors_list = new ArrayList<Integer>(neighbors);
+
+                int channel = neighbors_list.get(_random.nextInt(nelectrodes_empty));
+
+                while (data.keySet().contains(channel)) {
+                    channel = neighbors_list.get(_random.nextInt(nelectrodes_empty));
+                }
+
+                double noise = getChannel(channel).computeNoise(electrodes.getCapacitance(channel));
+
+
+                // Throw Gaussian above threshold
+                int charge = (int) Math.round(drawGaussianAboveThreshold(integral) * noise);
+                data.add(channel, new SiElectrodeData(charge));
+            }
+
+        }
+
+    }
+
+    public static int drawBinomial(int ntrials, double probability) {
+        _binomial.setNumberOfTrials(ntrials);
+        _binomial.setProbabilityOfSuccess(probability);
+
+        int nsuccess = 0;
+        try {
+            nsuccess = _binomial.inverseCumulativeProbability(_random.nextDouble());
+        } catch (MathException exception) {
+            throw new RuntimeException("Kpix failed to calculate inverse cumulative probability of binomial!");
+        }
+        return nsuccess;
+    }
+
+    /**
+     * Return a random variable following normal distribution, but beyond
+     * threshold provided during initialization.
+     *
+     * @param prob_above_threshold
+     * @return
+     */
+    public static double drawGaussianAboveThreshold(double prob_above_threshold) {
+        double draw, cumulative_probability;
+
+        draw = prob_above_threshold * _random.nextDouble();
+        cumulative_probability = 1.0 - prob_above_threshold + draw;
+
+        assert cumulative_probability < 1.0 : "cumulProb=" + cumulative_probability + ", draw=" + draw + ", probAboveThreshold=" + prob_above_threshold;
+        assert cumulative_probability >= 0.0 : "cumulProb=" + cumulative_probability + ", draw=" + draw + ", probAboveThreshold=" + prob_above_threshold;
+
+        double gaussian_random = 0;
+        try {
+            gaussian_random = _gaussian.inverseCumulativeProbability(cumulative_probability);
+        } catch (MathException e) {
+            System.out.println("MathException caught: " + e);
+        }
+
+        return gaussian_random;
+    }
+
+    /**
+     * DigitalChannel class representing a single channel's behavior
+     */
+    private class DigitalChannel implements ReadoutChannel {
+
+        private double _noise_intercept = 0.;
+        private double _noise_slope = 0.;
+        private double _noise_threshold = 100.;
+        private int _adc_for_hit = 100;
+
+        /**
+         * Set the conversion between ADC counts and charge in fC
+         *
+         * @param adc_per_fC conversion constant
+         */
+        private void setConversionConstant(int adc_for_hit) {
+            _adc_for_hit = adc_for_hit;
+        }
+
+        /**
+         * Return the conversion constant between ADC counts and charge in fC
+         *
+         * @return conversion constant
+         */
+        private double getConversionConstant() {
+            return _adc_for_hit;
+        }
+
+        /**
+         * Set the noise (in electrons) for 0 capacitance
+         *
+         * @param noise_intercept noise intercept
+         */
+        private void setNoiseIntercept(double noise_intercept) {
+            _noise_intercept = noise_intercept;
+        }
+
+        /**
+         * Set the capacitative noise slope (in electrons / pF)
+         *
+         * @param noise_slope noise slope
+         */
+        private void setNoiseSlope(double noise_slope) {
+            _noise_slope = noise_slope;
+        }
+
+        /**
+         * Set the noise threshold in units of electrons.
+         * 
+         * @param noise_threshold
+         */
+        private void setNoiseThreshold(double noise_threshold) {
+            _noise_threshold = noise_threshold;
+        }
+
+        /**
+         * Return the noise in electrons for a given strip/pixel capacitance
+         *
+         * @param capacitance capacitance in pF
+         * @return noise in electrons
+         */
+        public double computeNoise(double capacitance) {
+            return _noise_intercept + _noise_slope * capacitance;
+        }
+
+        /**
+         * Calculate the ADC value associated with a pixel/strip charge deposit
+         * 
+         * @param data electrode data
+         * @return charge
+         */
+        private int computeAdcValue(double charge) {
+
+            //  Set to the specified value for a hit if we are above the
+            //  noise threshold
+            int adc = 0;
+            if (charge > _noise_threshold) adc = _adc_for_hit;
+
+            //  Don't allow negative adc values
+            if (adc < 0) {
+                adc = 0;
+            }
+
+            //  Check for overflow - will be stored as a 16 bit integer
+            if (adc > 32767) {
+                adc = 32767;
+            }
+
+            return adc;
+        }
+    }
+}
CVSspam 0.2.8