Print

Print


Commit in GeomConverter/src/org/lcsim/util/probability on MAIN
BivariateDistribution.java-2601.1 removed
Erf.java-2831.1 removed
-543
2 removed files
moving these from GeomConverter to lcsim-math

GeomConverter/src/org/lcsim/util/probability
BivariateDistribution.java removed after 1.1
diff -N BivariateDistribution.java
--- BivariateDistribution.java	20 Apr 2009 21:25:39 -0000	1.1
+++ /dev/null	1 Jan 1970 00:00:00 -0000
@@ -1,260 +0,0 @@
-/*
- *  Class BivariateDistribution
- */
-package org.lcsim.util.probability;
-
-import org.lcsim.util.probability.Erf;
-
-/**
- * Calculate the probability integral for a set of bins in the x-y plane
- * of a bivariate normal distribution (i.e., a 2D Gaussian probability).
- *<p>
- * The evaluation of the probability integrals is described in:
- *<p>
- * Alan Genz, "Numerical Computation of Rectangular Bivariate and Trivariate
- * Normal and t Probabilities" in Statistics and Computing 14, 151 (2004).
- *<p>
- * The integration code is adapted from the FORTRAN source at:
- *<p>
- *   http://www.math.wsu.edu/faculty/genz/homepage
- *<p>
- * @author Richard Partridge
- */
-public class BivariateDistribution {
-
-    private int _nx;
-    private int _ny;
-    private double _xmin;
-    private double _ymin;
-    private double _dx;
-    private double _dy;
-    private double[] _h;
-    private double[] _k;
-
-    //  Weights and coordinates for 6 point Gauss-Legendre integration
-    private double[] _w6 = {0.1713244923791705, 0.3607615730481384, 0.4679139345726904};
-    private double[] _x6 = {0.9324695142031522, 0.6612093864662647, 0.2386191860831970};
-
-    //  Weights and coordinates for 12 point Gauss-Legendre integration
-    private double[] _w12 = {.04717533638651177, 0.1069393259953183, 0.1600783285433464,
-        0.2031674267230659, 0.2334925365383547, 0.2491470458134029};
-    private double[] _x12 = {0.9815606342467191, 0.9041172563704750, 0.7699026741943050,
-        0.5873179542866171, 0.3678314989981802, 0.1252334085114692};
-
-    //  Weights and coordinates for 20 point Gauss-Legendre integration
-    private double[] _w20 = {.01761400713915212, .04060142980038694, .06267204833410906,
-        .08327674157670475, 0.1019301198172404, 0.1181945319615184,
-        0.1316886384491766, 0.1420961093183821, 0.1491729864726037,
-        0.1527533871307259};
-    private double[] _x20 = {0.9931285991850949, 0.9639719272779138, 0.9122344282513259,
-        0.8391169718222188, 0.7463319064601508, 0.6360536807265150,
-        0.5108670019508271, 0.3737060887154196, 0.2277858511416451,
-        0.07652652113349733};
-
-    /**
-     * Set the locations of the x-coordinate bins
-     *
-     * @param nx number of x coordinate bins
-     * @param xmin minimum x coordinate
-     * @param dx width of x coordinate bins
-     */
-    public void xBins(int nx, double xmin, double dx) {
-        _nx = nx;
-        _xmin = xmin;
-        _dx = dx;
-        _h = new double[_nx + 1];
-    }
-
-    /**
-     * Set the locations of the y-coordinate bins
-     *
-     * @param ny number of y coordinate bins
-     * @param ymin minimum y coordinate
-     * @param dy width of y coordinate bins
-     */
-    public void yBins(int ny, double ymin, double dy) {
-        _ny = ny;
-        _ymin = ymin;
-        _dy = dy;
-        _k = new double[_ny + 1];
-    }
-
-    /**
-     * Integrate the Gaussian probability distribution over each x-y bins,
-     * which must be defined before calling this method.
-     * <p>
-     * The output is a double array that gives the binned probability
-     * distribution.  The first array index is used to indicate the bin in x
-     * and the second array index is used to indicate the bin in y.
-     * <p>
-     * @param x0 mean x coordinate of Gaussian distribution
-     * @param y0 mean y coordinate of Gaussian distribution
-     * @param sigx x coordinate standard deviation
-     * @param sigy y coordinate standard deviation
-     * @param rho x-y correlation coefficient
-     * @return probability distribution
-     */
-    public double[][] Calculate(double x0, double y0, double sigx, double sigy,
-            double rho) {
-
-        //  Calculate the scaled x coordinate for each bin edge
-        for (int i = 0; i < _nx + 1; i++) {
-            _h[i] = (_xmin + i * _dx - x0) / sigx;
-        }
-
-        //  Calculate the scaled y coordinate for each bin edge
-        for (int j = 0; j < _ny + 1; j++) {
-            _k[j] = (_ymin + j * _dy - y0) / sigy;
-        }
-
-        //  Create the array that will hold the binned probabilities
-        double[][] bi = new double[_nx][_ny];
-
-        //  Loop over the bin vertices
-        for (int i = 0; i < _nx + 1; i++) {
-            for (int j = 0; j < _ny + 1; j++) {
-
-                //  Calculate the probability for x>h and y>k for this vertex
-                double prob = GenzCalc(_h[i], _k[j], rho);
-
-                //  Add or subtract this probability from the affected bins.
-                //  The bin probability for bin (0,0) is the sum of the Genz
-                //  probabilities for the (0,0) and (1,1) vertices MINUS the
-                //  sum of the probabilities for the (0,1) and (1,0) vertices
-                if (i > 0 && j > 0) {
-                    bi[i - 1][j - 1] += prob;
-                }
-                if (i > 0 && j < _ny) {
-                    bi[i - 1][j] -= prob;
-                }
-                if (i < _nx && j > 0) {
-                    bi[i][j - 1] -= prob;
-                }
-                if (i < _nx && j < _ny) {
-                    bi[i][j] += prob;
-                }
-            }
-        }
-
-        return bi;
-    }
-
-    private double GenzCalc(double dh, double dk, double rho) {
-
-        double twopi = 2. * Math.PI;
-
-        //  Declare the Gauss-Legendre constants
-        int ng;
-        double[] w;
-        double[] x;
-
-        if (Math.abs(rho) < 0.3) {
-            //  for rho < 0.3 use 6 point Gauss-Legendre integration
-            ng = 3;
-            w = _w6;
-            x = _x6;
-        } else if (Math.abs(rho) < 0.75) {
-            //  for 0.3 < rho < 0.75 use 12 point Gauss-Legendre integration
-            ng = 6;
-            w = _w12;
-            x = _x12;
-        } else {
-            //  for rho > 0.75 use 20 point Gauss-Legendre integration
-            ng = 10;
-            w = _w20;
-            x = _x20;
-        }
-
-        //  Initialize the probability and some local variables
-        double bvn = 0.;
-        double h = dh;
-        double k = dk;
-        double hk = h * k;
-
-        //  For rho < 0.925, integrate equation 3 in the Genz paper
-        if (Math.abs(rho) < 0.925) {
-
-            //  More or less direct port of Genz code follows
-            //  It is fairly easy to match this calculation against equation 3 of
-            //  Genz's paper if you take into account that you need to change
-            //  variables so the integration argument spans the range -1 to 1
-            double hs = (h * h + k * k) / 2.;
-            double asr = Math.asin(rho);
-            double sn;
-            for (int i = 0; i < ng; i++) {
-                sn = Math.sin(asr * (1 - x[i]) / 2.);
-                bvn += w[i] * Math.exp((sn * hk - hs) / (1 - sn * sn));
-                sn = Math.sin(asr * (1 + x[i]) / 2.);
-                bvn += w[i] * Math.exp((sn * hk - hs) / (1 - sn * sn));
-            }
-            //  The factor of asr/2 comes from changing variables so the
-            //  integration is over the range -1 to 1 instead of 0 - asin(rho)
-            bvn = bvn * asr / (2. * twopi) + Erf.phi(-h) * Erf.phi(-k);
-
-        } else {
-            //  rho > 0.925 - integrate equation 6 in Genz paper with the
-            //  extra term in the Taylor expansion given in equation 7.
-            //  The rest of this code is pretty dense and is a pretty direct
-            //  port of Genz's code.
-
-            if (rho < 0.) {
-                k = -k;
-                hk = -hk;
-            }
-
-            if (Math.abs(rho) < 1.) {
-
-                double as = (1 - rho) * (1 + rho);
-                double a = Math.sqrt(as);
-                double bs = (h - k) * (h - k);
-                double c = (4. - hk) / 8.;
-                double d = (12. - hk) / 16.;
-                double asr = -(bs / as + hk) / 2.;
-
-                if (asr > -100.) {
-                    bvn = a * Math.exp(asr) *
-                            (1. - c * (bs - as) * (1. - d * bs / 5.) / 3. +
-                            c * d * as * as / 5.);
-                }
-
-                if (-hk < 100.) {
-                    double b = Math.sqrt(bs);
-                    bvn -= Math.exp(-hk / 2.) * Math.sqrt(twopi) * Erf.phi(-b / a) *
-                            b * (1 - c * bs * (1 - d * bs / 5.) / 3.);
-                }
-
-                a = a / 2.;
-                for (int i = 0; i < ng; i++) {
-                    for (int j = 0; j < 2; j++) {
-                        int is = -1;
-                        if (j > 0) {
-                            is = 1;
-                        }
-                        double xs = Math.pow(a * (is * x[i] + 1), 2);
-                        double rs = Math.sqrt(1 - xs);
-                        asr = -(bs / xs + hk) / 2;
-
-                        if (asr > -100) {
-                            double sp = (1 + c * xs * (1 + d * xs));
-                            double ep = Math.exp(-hk * (1 - rs) / (2 * (1 + rs))) / rs;
-                            bvn += a * w[i] * Math.exp(asr) * (ep - sp);
-                        }
-                    }
-                }
-
-                bvn = -bvn / twopi;
-            }
-
-            if (rho > 0) {
-                bvn = bvn + Erf.phi(-Math.max(h, k));
-            } else {
-                bvn = -bvn;
-                if (k > h) {
-                    bvn += Erf.phi(k) - Erf.phi(h);
-                }
-            }
-        }
-         
-        return Math.max(0, Math.min(1, bvn));
-    }
-}
\ No newline at end of file

GeomConverter/src/org/lcsim/util/probability
Erf.java removed after 1.1
diff -N Erf.java
--- Erf.java	20 Apr 2009 21:25:39 -0000	1.1
+++ /dev/null	1 Jan 1970 00:00:00 -0000
@@ -1,283 +0,0 @@
-/*
- *  Class Erf
- * 
- */
-package org.lcsim.util.probability;
-
-/**
- *
- * Calculates the following probability integrals:
- *<p>
- *   erf(x) <br>
- *   erfc(x) = 1 - erf(x) <br>
- *   phi(x) = 0.5 * erfc(-x/sqrt(2)) <br>
- *   phic(x) = 0.5 * erfc(x/sqrt(2))
- *<p>
- * Note that phi(x) gives the probability for an observation smaller than x for
- * a Gaussian probability distribution with zero mean and unit standard
- * deviation, while phic(x) gives the probability for an observation larger
- * than x.
- *<p>
- * The algorithms for erf(x) and erfc(x) are based on Schonfelder's work.
- * See J.L. Schonfelder, "Chebyshev Expansions for the Error and Related
- * Functions", Math. Comp. 32, 1232 (1978).  The calculations of phi(x)
- * and phic(x) are trivially calculated using the erfc(x) algorithm.
- *<p>
- * Schonfelder's algorithms are advertised to provide "30 digit" accurracy.
- * Since this level of accuracy exceeds the machine precision for doubles,
- * summation terms whose relative weight is below machine precision are
- * dropped.
- *<p>
- * In this algorithm, we calculate
- *<p>
- *   erf(x) = x* y(t) for |x| < 2 <br>
- *   erf(x) = 1 - exp(-x*x) * y(t) / x for x >= 2 <br>
- *   erfc(|x|) = exp(-x*x)*y(|x|) <br>
- *<p>
- * The functions y(x) are expanded in terms of Chebyshev polynomials, where
- * there is a different set of coefficients a[r] for each of the above 3 cases.
- *<p>
- *   y(x) = Sum'( a[r] * T(r, t) )
- *<p>
- * The notation Sum' indicates that the r = 0 term is divided by 2.
- *<p>
- * The variable t is defined as
- *<p>
- *   t = ( x*x - 2 ) / 2   for erf(x) with x < 2 <br>
- *   t = ( 21 - 2*x*x ) / (5 + 2*x*x)   for erf(x) with x >= 2 <br>
- *   t = ( 4*|x| - 15 ) / ( 4*|x| + 15 )   for erfc(x)
- *<p>
- * The code and implementation are based on Alan Genz's FORTRAN source code
- * that can be found at http://www.math.wsu.edu/faculty/genz/homepage.
- *<p>
- * Genz's code was a bit tricky to "reverse engineer", so we go through the
- * way these calculations are performed in some detail.  Rather than calculate
- * y(x) directly,  he calculates
- *<p>
- *   bm = Sum( a[r] * U(r, t) )    r = 0 : N <br>
- *   bp = Sum( a[r] * U(r-2, t) )  r = 2 : N
- *<p>
- * where U(r, t) are Chebyshev polynomials of the second kind.  The coefficients
- * a[r] decrease with r, and the value of N is chosen where a[N] / a[0] is
- * ~10^-16, reflecting the machine precision for doubles.
- *<p>
- * The Chebyshev polynomials of the second kind U(r, t) are calculated using the
- * recursion relation:
- *<p>
- *   U(r, t) = 2 * t * U(r-1, t) - U(r-2, t)
- *<p>
- * Genz uses the identity
- *<p>
- *   T(r, t) = ( U(r, t) - U(r-2, t) ) / 2
- *<p>
- * to calculate y(x)
- *<p>
- *   y(x) = ( bm - bp ) / 2.
- *<p>
- * Note that we get the correct contributions for the r = 0 and r = 1 terms by
- * ignoring these terms in the bp sum, including getting the desired factor
- * of 1/2 in the contribution from the r = 0 term.
- *
- * @author Richard Partridge
- */
-public class Erf {
-
-    private static double rtwo = 1.414213562373095048801688724209e0;
-
-    //  Coefficients for the erf(x) calculation with |x| < 2
-    private static double[] a1 = {
-        1.483110564084803581889448079057e0,
-        -3.01071073386594942470731046311e-1,
-        6.8994830689831566246603180718e-2,
-        -1.3916271264722187682546525687e-2,
-        2.420799522433463662891678239e-3,
-        -3.65863968584808644649382577e-4,
-        4.8620984432319048282887568e-5,
-        -5.749256558035684835054215e-6,
-        6.11324357843476469706758e-7,
-        -5.8991015312958434390846e-8,
-        5.207009092068648240455e-9,
-        -4.23297587996554326810e-10,
-        3.1881135066491749748e-11,
-        -2.236155018832684273e-12,
-        1.46732984799108492e-13,
-        -9.044001985381747e-15,
-        5.25481371547092e-16};
-
-    //  Coefficients for the err(x) calculation with x > 2
-    private static double[] a2 = {
-      1.077977852072383151168335910348e0,
-      -2.6559890409148673372146500904e-2,
-      -1.487073146698099509605046333e-3,
-      -1.38040145414143859607708920e-4,
-      -1.1280303332287491498507366e-5,
-      -1.172869842743725224053739e-6,
-      -1.03476150393304615537382e-7,
-      -1.1899114085892438254447e-8,
-      -1.016222544989498640476e-9,
-      -1.37895716146965692169e-10,
-      -9.369613033737303335e-12,
-      -1.918809583959525349e-12,
-      -3.7573017201993707e-14,
-      -3.7053726026983357e-14,
-      2.627565423490371e-15,
-      -1.121322876437933e-15,
-      1.84136028922538e-16};
-
-    //  Coefficients for the erfc(x) calculation
-    private static double[] a3 = {
-        6.10143081923200417926465815756e-1,
-        -4.34841272712577471828182820888e-1,
-        1.76351193643605501125840298123e-1,
-        -6.0710795609249414860051215825e-2,
-        1.7712068995694114486147141191e-2,
-        -4.321119385567293818599864968e-3,
-        8.54216676887098678819832055e-4,
-        -1.27155090609162742628893940e-4,
-        1.1248167243671189468847072e-5,
-        3.13063885421820972630152e-7,
-        -2.70988068537762022009086e-7,
-        3.0737622701407688440959e-8,
-        2.515620384817622937314e-9,
-        -1.028929921320319127590e-9,
-        2.9944052119949939363e-11,
-        2.6051789687266936290e-11,
-        -2.634839924171969386e-12,
-        -6.43404509890636443e-13,
-        1.12457401801663447e-13,
-        1.7281533389986098e-14,
-        -4.264101694942375e-15,
-        -5.45371977880191e-16,
-        1.58697607761671e-16,
-        2.0899837844334e-17,
-        -5.900526869409e-18};
-
-    /**
-     * Calculate the error function
-     * 
-     * @param x argument
-     * @return error function
-     */
-    public static double erf(double x) {
-
-        //  Initialize
-        double xa = Math.abs(x);
-        double erf;
-
-        //  Case 1: |x| < 2
-        if (xa < 2.) {
-
-            //  First calculate 2*t
-            double tt = x*x - 2.;
-
-            //  Initialize the recursion variables.
-            double bm = 0.;
-            double b = 0.;
-            double bp = 0.;
-
-            //  Calculate bm and bp as defined above
-            for (int i = 16; i >= 0; i--) {
-                bp = b;
-                b = bm;
-                bm = tt * b - bp + a1[i];
-            }
-
-            //  Finally, calculate erfc using the Chebyshev polynomial identity
-            erf = x * (bm - bp) / 2.;
-
-        } else {
-
-            //  Case 2: |x| >= 2
-
-            //  First calculate 2*t
-            double tt = (42. - 4 * xa*xa) / (5. + 2 * xa*xa);
-
-            //  Initialize the recursion variables.
-            double bm = 0.;
-            double b = 0.;
-            double bp = 0.;
-
-            //  Calculate bm and bp as defined above
-            for (int i = 16; i >= 0; i--) {
-                bp = b;
-                b = bm;
-                bm = tt * b - bp + a2[i];
-            }
-
-            //  Finally, calculate erfc using the Chebyshev polynomial identity
-            erf = 1. - Math.exp(-x * x) * (bm - bp) / (2. * xa);
-
-            //  Take care of negative argument for case 2
-            if (x < 0.) erf = -erf;
-        }
-
-        //  Finished both cases!
-        return erf;
-    }
-
-    /**
-     * Calculate the error function complement
-     * @param x argument
-     * @return error function complement
-     */
-    public static double erfc(double x) {
-
-        //  Initialize
-        double xa = Math.abs(x);
-        double erfc;
-
-        //  Set phi to 0 when the argument is too big
-        if (xa > 100.) {
-            erfc = 0.;
-        } else {
-
-            //  First calculate 2*t
-            double tt = (8. * xa - 30.) / (4. * xa + 15.);
-
-            //  Initialize the recursion variables.
-            double bm = 0.;
-            double b = 0.;
-            double bp = 0.;
-
-            //  Calculate bm and bp as defined above
-            for (int i = 24; i >= 0; i--) {
-                bp = b;
-                b = bm;
-                bm = tt * b - bp + a3[i];
-            }
-
-            //  Finally, calculate erfc using the Chebyshev polynomial identity
-            erfc = Math.exp(-x * x) * (bm - bp) / 2.;
-        }
-
-        //  Cacluate erfc for negative arguments
-        if (x < 0.) erfc = 2. - erfc;
-
-        return erfc;
-    }
-
-    /**
-     * Calcualate the probability for an observation smaller than x for a
-     * Gaussian probability distribution with zero mean and unit standard
-     * deviation
-     * 
-     * @param x argument
-     * @return probability integral
-     */
-    public static double phi(double x) {
-        return 0.5 * erfc( -x / rtwo);
-    }
-
-    /**
-     * Calculate the probability for an observation larger than x for a
-     * Gaussian probability distribution with zero mean and unit standard
-     * deviation
-     *
-     * @param x argument
-     * @return probability integral
-     */
-    public static double phic(double x) {
-        return 0.5 * erfc(x / rtwo);
-    }
-}
-
CVSspam 0.2.8