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Abstract

The theory underlying neutrino oscillations has been described at length in the literature. The

neutrino state produced by a weak decay is usually portrayed as a linear superposition of mass

eigenstates with, variously, equal energies or equal momenta. We point out that such a description

is incorrect, that in fact, the neutrino is entangled with the other particle or particles emerging

from the decay. We offer an analysis of oscillation phenomena involving neutrinos (applying equally

well to neutral mesons) that takes entanglement into account. Thereby we present a theoretically

sound proof of the universal validity of the oscillation formulæ ordinarily used. In so doing, we show

that the departures from exponential decay reported by the GSI experiment cannot be attributed

to neutrino mixing. Furthermore, we demonstrate that the ‘Mössbauer’ neutrino oscillation ex-

periment proposed by Raghavan, while technically challenging, is correctly and unambiguously

describable by means of the usual oscillation formalæ.
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I. INTRODUCTION

Neutrino oscillations are among the most interesting phenomena discovered in particle

physics in recent years. Although these oscillations were anticipated long ago [1, 2], their

detection was complicated by the small size of the neutrino masses. Today, however, oscil-

lation phenomena have been observed and studied for neutrinos originating from the sun,

nuclear reactors, accelerators, and cosmic-ray interactions in the atmosphere. For a review

see [3].

Recently, several novel and ingenious experiments have been suggested (and in at least one

case carried out) to further explore the physics of neutrino masses. Raghavan has proposed

the study of oscillations via the resonant capture of anti-neutrinos produced by the bound-

state beta decay of tritium [4, 5, 6, 7]. This suggestion has led to some confusion. Akhmedov

et al. [8, 9] agree that oscillations should be expected in this experiment, whilst Bilenky

et al. [10, 11] conclude that whether or not oscillations are seen can “test fundamentally

different approaches to neutrino oscillations”.

In addition, Litvinov et al. [12] report the observation of non-exponential weak decays

of hydrogenic ions. Some theoretical analyses interpret these data in terms of neutrino

mixing [13, 14, 15, 16] while others refute such an interpretation [17, 18, 19, 20]. In another

experiment a stronger bound was set [21] on the amplitude of the oscillatory modulation of

the exponential decay of 142Pm at the frequency reported in [12].

Our motivation for this work is to produce a simple and coherent theoretical framework

for describing oscillation experiments involving elementary particles. Although a proper

treatment of oscillation phenomena may appear (implicitly) in the literature1, the significant

discrepancies and imprecisions in existing approaches to neutrino oscillations suggest the

need for such a unified framework.

We use neutrinos as our primary example in the derivation of the oscillation formulæ. As

we shall see, our results apply equally well to other types of elementary particle oscillations

including those of B and K mesons. We discuss neutral meson oscillations in III.

1 For example, the work of Nauenberg [22], while not identical to our approach, correctly identifies entangle-

ment as necessary for energy–momentum conservation. Similarly Kayser [23] recognized that sufficiently

accurate momentum measurements prevent oscillations.
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II. UNIVERSAL OSCILLATIONS

Neutrino oscillations arise because the weak interactions conserve lepton flavor whereas

energy eigenstate neutrinos are not flavor eigenstates. Most analyses describe the production

of neutrinos (via a weak decay or scattering event) in terms of a flavor eigenstate which is then

decomposed as a linear combination of mass eigenstate neutrinos, each of which propagates

according to its own dispersion relation. Often an analogy is drawn with a simple two state

system (for ease of notation we restrict to two neutrino flavors with mixing angle θ; the

generalization to three flavors is straightforward), and frequently one sees formulæ like

|νe〉 = cos θ |νL〉 + sin θ |νH〉 (1)

where we have labeled the mass eigenstates as “H”eavy and “L”ight. This approach is

not entirely correct and has led to significant confusion in the literature. For example, the

states must depend on the three-momenta of the neutrinos. But because νL and νH have

different masses it is not possible for this superposition to be an eigenstate of both energy

and momentum, thus leading some authors to suggest a common energy while others prefer

a common momentum. However neither of these suggestions can be correct, because neither

can account for simultaneous energy and momentum conservation in the weak process that

produces the neutrino.

The resolution to this puzzle is quite simple: the state produced following the weak inter-

action is not of the form (1). Rather, the state produced has the neutrino mass eigenstates

entangled with the other particles remaining after the weak process has occurred. Energy

and momentum are fully conserved by the process, as must be the case given space-time

translation invariance of the underlying interaction.

A simple example serves to illustrate the primary issues. Consider a particle N (the

“parent”) of mass M which decays to another particle n (the “daughter”) of mass M ′ plus

a neutrino.2 To simplify our discussion we ignore the spins of all particles involved as well

as any internal excitations. By assuming the parent to be sufficiently long-lived, we may

choose the initial state to have arbitrarily well-defined energy and momentum P and we may

2 The example of a 2-body decay exhibits all the features of interest, and extension to other processes

requires no significant modifications. The particle could be a pion decaying conventionally to a muon or

equally well an atom decaying via electron capture.
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treat the decay process in perturbation theory. In this approximation we may think of the

decay as occurring instantaneously at some time (distributed in accord with the exponential

decay law) leaving us in the state

|ψ〉 =
1√
N

[

∫

D2(kl, ql) cos θ |n(kl)νL(ql)〉 +

∫

D2(kh, qh) sin θ |n(kh)νH(qh)〉
]

(2)

where q2
i = m2

i and k2
i = M ′2. The phase space for the two particles D2(k, q) is

D2(k, q) =
d3k

(2π)32Ek

d3q

(2π)32Eq

(2π)4δ4(P − k − q) (3)

where the energies Ek, Eq are computed with the appropriate particle masses and, for sim-

plicity, we have assumed an amplitude independent of momenta. The value of the normal-

ization constant N will not be needed.3 Note that all particles are on the mass-shell and

|ψ〉 is an eigenstate of energy and momentum with eigenvalue P . This is achieved through

the entanglement of the neutrino with the daughter particle and would not be possible if

the state were a non-entangled product with the ket of (1) as a factor.

The latter point is worth emphasizing. Flavor-charge operators, such as the electron

or muon number operators, remain well-defined in the Standard Model augmented with

neutrino mixing but no longer commute with the Hamiltonian. The lepton flavor conserving

weak interactions are most simply written in terms of the electron (muon) neutrino field

with definite flavor which acts on a state so as to alter the electron (muon) number by one

unit. However, since time evolution alters the flavor, it is not very fruitful to consider states

of definite flavor. Rather, although the fields that create and annihilate mass eigenstates are

formed as linear combinations of the fields of definite flavor, the corresponding construction

for states is not helpful. This situation is much like the relation between chirality (a useful

property of fields) and helicity (a measurable property of states).

Having properly identified the final state, how are we to treat oscillations? Most oscilla-

tion experiments observe the neutrino as it produces a charged lepton via a weak interaction,

and ignore any other particles that accompany the neutrino’s production. Because the neu-

trino is entangled with these other (undetected) particles, we must construct the density

matrix for the neutrino by tracing over these other degrees of freedom. Neutrino oscillations

3 For reference N = V T · 2MΓ where V T is the volume of space-time and Γ is the parent particle decay

rate.
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arise from an off-diagonal term in this density matrix of the form |νL〉 〈νH |. Constructing

the density matrix from the state (2), we obtain

ρν =
1√
N

[

∫

D2(kl, ql)D2(k̃l, q̃l) cos2 θ
〈

n(kl)
∣

∣

∣
n(k̃l)

〉

|νL(ql)〉 〈νL(q̃l)|

+

∫

D2(kl, ql)D2(k̃h, q̃h) cos θ sin θ
〈

n(kl)
∣

∣

∣
n(k̃h)

〉

|νL(ql)〉 〈νH(q̃h)| + h.c.

+

∫

D2(kh, qh)D2(k̃h, q̃h) sin2 θ
〈

n(kh)
∣

∣

∣
n(k̃h)

〉

|νH(qh)〉 〈νH(q̃h)|
]

. (4)

However the cross terms between |νL〉 and |νH〉 on the middle line vanish. A non-zero inner

product for the daughter particle (E ′
k ≡

√

k2 +M ′2)

〈

n(kl)
∣

∣

∣
n(k̃h)

〉

= (2π)32E ′
kl
δ3(kl − k̃h) (5)

requires that the two momenta be equal, while the delta functions in D2 reflecting energy–

momentum conservation require that kl − k̃h = q̃h − ql. But the two neutrino states have

different invariant masses and so this momentum difference can never vanish. Hence these

daughter particle states are orthogonal and the neutrino density matrix is diagonal

ρν ∝
∫

D2(kl, ql)

2E
(νL)
ql

|νL(ql)〉 〈νL(ql)| cos2 θ +

∫

D2(kh, qh)

2E
(νH)
qh

|νH(qh)〉 〈νH(qh)| sin2 θ (6)

with probability cos2 θ of containing νL and probability sin2 θ of containing νH . Since the

amplitude for the detection of νL via an electron-implicated weak interaction is cos θ and

that for νH is sin θ, this leads to a detection probability proportional to cos4 θ+sin4 θ, exactly

as we expect in the absence of interference. When the decay products of an initial state of

well-defined momentum evolve without further interaction no oscillation phenomena appear.

So how can neutrino oscillations arise? The assumptions of the final sentence of the

preceding paragraph must not apply to experiments that exhibit oscillations. In fact, so

long as the neutrino remains entangled as in (2), there is no possibility of interference and

hence no possibility of oscillation. To realize oscillations the neutrino mass eigenstates must

be disentangled.

We have so far treated the parent particle as an exact energy and momentum eigenstate

with an associated unrealistic uniform detection probability throughout spacetime. This

is surely not the case in realistic circumstances. Nonetheless, it is instructive to consider

this unrealistic state in the situation where the daughter particle is detected in addition

to the neutrino. For neutrinos produced in pion decay, for example, the associated muon
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(or its decay products) might be detected in a state |n̄〉. Rather then tracing over the

unobserved daughter this case requires computation of the joint probability for observation

of the daughter in the state |n̄〉 along with the neutrino. This may be calculated by projecting

the state (2) by |n̄〉 〈n̄|. This projection then disentangles the state (2), leaving the neutrino

in a simple superposition. The neutrino itself is unaffected by this projection: the two

components continue to have the momenta ql, qh determined by the decay kinematics.

This projection alters the amplitude of the νL and νH components in the superposition by

the two matrix elements 〈n̄|n(kl,h)〉. The state |n̄〉 is typically well-localized in space-time,

and hence has a substantial spread in momentum. Because the momenta kl,h are nearly

the same the matrix elements 〈n̄|n(kl)〉 and 〈n̄|n(kh)〉 are, for all practical purposes, equal.

Hence, subsequent to this projection the neutrino may be treated as a superposition of the

two mass eigenstates (as is usually done) with momenta ql and qh:

|ψ〉 ∼ cos θ |νL(ql)〉 + sin θ |νH(qh)〉 . (7)

We have restricted the superposition to one spatial dimension, eliminating the integral over

the neutrino direction. This is a reasonable approximation because oscillation experiments

require the neutrino to propagate far from the production point, hence we detect only

those particles traveling in the appropriate direction. As promised in the introduction, the

neutrinos are neither equal in energy nor equal in momentum. The detection of the neutrino

may be modeled by acting with an operator of electron flavor at the detector space-time

location z ≡ (t, d) (as usual we work in the Heisenberg picture) giving a detection amplitude

A ∼ cos2θ eiql·z + sin2θ eiqh·z . (8)

The square of this expression contains an interference term between the H and L ampli-

tudes which may produce oscillations. Although the amplitudes in (8) show only complex-

exponential dependence on the detection location, realistic experiments involve amplitudes

that have an extended space-time support localized around the trajectory d = vt. The H

and L amplitudes interfere only when they have common support. Because the particles

have velocity dispersions with slightly different central values, they separate as they travel

towards the detection event. Interference is possible only if this separation is smaller than

the localization size of the particle v∆T , or what is often called the size of the wave-packet.
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The condition for interference is
∣

∣

∣

vh − vl

vh + vl

∣

∣

∣
=

∣

∣

∣

σωδq − δωσq

σωσq − δωδq

∣

∣

∣
≪ ∆T

t
(9)

where the sum and difference of the neutrino energies are σω ≡ ωh + ωl, δω ≡ ωh − ωl and

σq, δq are the corresponding expressions for the sum and difference of the magnitudes of the

spatial momenta.

The interference term in the square of the amplitude (8) has the phase φ ≡ (qh − ql) · z.
So far we have made no assumptions about the masses of the particles involved, nor about

the momentum of the initial parent that gives rise to the neutrino. This generality allows

us to describe oscillations of other particles (such as K and B mesons) as well as neutrinos.

The only assumption we make at this stage is that the difference in velocities between the

two components is small enough so that the particles may interfere in the detector located

at z ≡ (t, d): Eq. (9). This condition applies to K meson oscillations, B meson oscillations

and neutrino oscillations under all realistic conditions. We continue to refer to the oscillating

particles as neutrinos in the sequel.

Condition (9) ensures that the two components of the state overlap at the detection

point, thus allowing them to interfere. For reasonable velocity dispersions this overlap may

be evaluated using stationary phase and is dominated when neutrino velocities are v = d/t.

Thus we may take σq/σω = d/t. Provided we observe the neutrinos over times such that

the two components have not spatially separated, the space-time vector z ≡ (t, d) may then

be expressed as

z = (t, d) ≃ t
(

1,
σq

σω

)

=
t

σω
(qh + ql) . (10)

The oscillation phase is then

φ ≡ (qh − ql) · z =
t

σω
(qh − ql) · (qh + ql) = t

δm2

σω
. (11)

This is the usual answer for relativistic neutrinos where t ≃ d and σω is just twice the

neutrino energy. But the same expression applies whenever (9) is satisfied, relativistic or

not. For non-relativistic particles, for example, we have σω ≃ ml + mh and the phase φ is

then tδm.

In this argument we used no properties of the vectors ql,h other than the condition (9).

The energies and magnitudes of the spatial momenta are fully determined: the two neutri-

nos are neither equal in energy nor momentum. Nevertheless, use of such incorrect values

fortuitously leads to the correct oscillation phase.
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Moreover, the detailed properties of the state |n̄〉, other than the near equality of the

matrix elements 〈n̄|n(kl,h)〉, played no role in our analysis. Similarly the mechanism pro-

ducing the neutrino and any distribution in its momentum are irrelevant to (11) provided

(9) is satisfied. In this sense the oscillation phase of (11) is “universal”.

Usually the neutrinos are detected without accompanied detection of the daughter par-

ticle. In this case we must employ the density matrix for the neutrino after tracing over

the daughter Hilbert space. Interference between the νL and νH components requires a non-

vanishing inner product of the daughter states in this trace. In practice this is realized by

accounting for a momentum spread arising from the parent. For any realistic experiment,

the parent state is not a momentum eigenstate but rather a superposition of momenta in a

narrow range. If this range is such that the daughter particle accompanying νL can have the

same four-momentum as the daughter particle accompanying νH , then oscillations become

possible. The difference between the daughter particle momenta in the two components is

of order δm2/σω. For realistic neutrino masses and energies, the required momentum dif-

ference is exceedingly small, less than 10−10 eV. Because realistic experiments always start

with an initial state at least slightly localized in space-time (often to a nuclear distance,

but surely to within a kilometer or better) this momentum difference always lies within the

initial momentum spread.

As an example consider the long-lived parent particle as above but in an initial state

which is a superposition of spatial momenta in a narrow band.4 This may be described by

superposing slight boosts Λv of the initial particle momentum P in the state (2). Assuming

the initial momentum spread is small corresponds to requiring that only v ≪ 1 appears in

this superposition. The final state (2) is then replaced by a similar superposition

|ψ〉 =
1√
N

∫

d3vf(v)
[

∫

D2(kl, ql) cos θ |n(Λvkl)νL(Λvql)〉

+

∫

D2(kh, qh) sin θ |n(Λvkh)νH(Λvqh)〉
]

(12)

where f(v) describes the superposition and we have used the Lorentz invariance of the phase

4 The finite lifetime of the unstable initial particle produces an additional (Lorentzian) spread in the invari-

ant mass of the daughter plus the neutrino. This effect may be incorporated similarly to our inclusion of

the spatial momentum spread.
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space. We may simplify as before by restricting to a single direction

|ψ〉 ∼
∫

dvf(v)
[

cos θ |n(Λvkl)νL(Λvql)〉 + sin θ |n(Λvkh)νH(Λvqh)〉
]

(13)

where ki and qi are now completely determined in terms of the initial momentum P by con-

servation of energy and momentum. Although not obvious at first glance, this superposition

allows for the disentanglement of the neutrino mass from the daughter momentum.

To see this, note that the vectors kl and kh have the same invariant mass, and hence

differ from a common four-momentum k by (small) Lorentz boosts: Λv0
kh = Λ−v0

kl ≡ k.

The boost velocity v0 is easily computed in terms of ql and qh:

v0 = − δq

2Ep − σω
. (14)

By shifting the velocity v in the integrals in the two terms of (13) relative to each other we

can rewrite the superposition as

|ψ〉 ∼
∫

dv |n(Λvk)〉⊗
[

f(v+v0) cos θ |νL(ΛvΛv0
ql)〉+f(v−v0) sin θ |νH(ΛvΛ−v0

qh)〉
]

. (15)

Although this state is still entangled (a sum of products), the neutrino mass is not fully

entangled with the daughter momentum. The density matrix for the neutrino constructed

upon tracing over the daughter states now contains cross terms between neutrino L and

neutrino H which give rise to oscillations.

Our previous calculation of the oscillation phase continues to apply, subject to two

changes. Firstly the interference term contains a factor of f(v + v0)f
∗(v − v0) rather than

the |f(v + v0)|2 or |f(v − v0)|2 factors of the diagonal terms. If, as is generally the case,

the function f representing the momentum superposition of the parent does not vary sig-

nificantly on the scale of the small velocity v0, these factors are all essentially the same.

Secondly the energy σω that appears is modified by the boosts:

σω → σω − v0δq + vσq . (16)

If the support of f is such that v ≪ 1, so that the momentum of the parent is moderately

well defined, we may drop the terms proportional to v and v0. Once again we obtain

the familiar oscillation formula, and once again the details of the momentum superpositions

involved play no role other than ensuring the presence of the interference term in the neutrino

density matrix.

9



We conclude this section with a brief discussion of the novel oscillation-related experi-

ments mentioned earlier. Consider first the proposal of Raghavan [4, 5, 6, 7] to study the

resonant capture of antineutrinos from bound-state tritium decay. The question of whether

or not such “Mössbauer neutrino oscillations” are present has been hotly contested. Bilenky

et al. [10, 11] conclude that such oscillations may or may not occur and that the Raghavan

experiment “provides the unique possibility to discriminate basically different approaches”

to neutrino oscillations. Contrariwise, Akhmedov et al. [9] find that “a proper interpretation

of the time-energy uncertainty relation is fully consistent with oscillations of Mössbauer neu-

trinos.” The result of our analysis is simple. Condition (9), our unique and simple criterion

for the appearance of oscillations is satisfied by the Raghavan experiment: if the Raghavan

experiment can be realized, it will be a powerful tool with which to study neutrino oscilla-

tions. Furthermore and contrary to Bilenky et al., there is no ambiguity about the approach

to neutrino oscillations for the Raghavan experiment to resolve.

Now let us turn to the GSI experiment. An essential feature of this experiment is that the

neutrino is not detected: the observed oscillations appear in measurements of the time of dis-

appearance of the parent particle (coincident with the appearance of the daughter particle).

As shown below, the arguments we have adduced demonstrate that experiments which do

not observe the neutrino cannot display interference. Our discussion so far has not included

the production and decay of the parent particle, but this is easily incorporated. We create

the parent particle by acting on the vacuum with some (smeared) operator N †
J producing

the parent around t = 0, and model the observation of the daughter at a subsequent time

by acting with a (smeared) operator nj around the time t. The neutrino is not observed

and remains in the final state. The squared amplitude for this process is represented dia-

grammatically in Fig. 1. An on-shell neutrino in the final state is represented by the dashed

line, corresponding to a cut propagator δ(q2−m2
i )θ(q

0). The full squared amplitude is given

by a sum over the several neutrino mass eigenstates. Notice that there are no cross terms

between these mass eigenstates: because the neutrinos have different invariant masses, there

is no possibility of interference between them. Thus the reported oscillation of the decay

time cannot be explained in terms of interference between neutrino states.
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FIG. 1: Feynman diagram representing |A|2 for the observation of the daughter particle. The

square blobs represent the parent source, the round blobs the daughter detector, and the dashed

line is the (on-shell) neutrino.

III. NEUTRAL MESON MIXING

We turn to the study of mixing effects of mesons, in particular in the B meson sector.

Our discussion is framed to most closely resemble the experiments conducted at B factories,

but a similar analysis applies to other cases. Measurements at the B factories observe the B

mesons produced in the decay of the Υ(4S). We consider the case where one of the mesons

is detected at a space-time location z through its decay to the state |O〉 and the other at

space-time location z̃ through its decay to the state |Õ〉. The entangled state resulting from

the decay of an Υ(4S) into neutral B mesons is

|ψ〉 =
1√
2

[
∣

∣

∣
BL(kl)BH(k̃h)

〉

−
∣

∣

∣
BH(kh)BL(k̃l)

〉]

(17)

where L,H label the light and heavy mass eigenstates and, as in the previous section, we

have restricted the momenta to those pointing in the directions of the observation events.

By convention the momenta without over-tildes point toward the event z while those with

tildes point toward z̃.

The observations of the B mesons may be modeled by taking the matrix element of an

appropriate local operator that annihilates the particles in the final states |O〉 , |Õ〉 between

|ψ〉 and the vacuum:

SOÕ =
〈

0
∣

∣

∣
O(z)Õ(z̃)

∣

∣

∣
ψ

〉

=
1√
2

[

〈0|O(z)|BL(kl)〉 〈0|Õ(z̃)|BH(k̃h)〉

− 〈0|O(z)|BH(kh)〉 〈0|Õ(z̃)|BL(k̃l)〉
]

. (18)
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The space-time dependence of these matrix elements is determined by translation invariance:

〈0|O(z)|BL(kl)〉 =eikl·z 〈0|O(0)|BL(kl)〉 ≡ eikl·zAL

〈0|Õ(z̃)|BL(k̃l)〉 =eik̃l·z̃ 〈0|Õ(0)|BL(k̃l)〉 ≡ eik̃l·z̃ÃL

(19)

and similarly for the matrix elements involving BH .

Taking the absolute-value squared of S, we obtain

|SOÕ|2 =
1

2

{

|AL|2|ÃH |2ei(kl−k∗

l
)·zei(k̃h−k̃∗

h
)·z̃

−ALA
∗
HÃHÃ

∗
Le

i(kl−k∗

h
)·zei(k̃h−k̃∗

l
)·z̃ − c.c.

+ |AH |2|B̃L|2ei(kh−k∗

h
)·zei(k̃l−k̃∗

l
)·z̃

}

. (20)

We have uncharacteristically kept the complex conjugation on the momenta of the B mesons.

This is to keep track of the finite lifetime of the mesons that may be incorporated as an

imaginary part for the energy.5 Using the formula derived in the previous section, we have

i(kl − k∗l ) · z = −ΓLt i(kh − k∗h) · z = −ΓHt

i(k̃l − k̃∗l ) · z̃ = −Γ̃Lt̃ i(k̃h − k̃∗h) · z̃ = −Γ̃H t̃

i(kl − k∗h) · z = −ΓL + ΓH

2
t− it

δm2

σω

i(k̃h − k̃∗l ) · z̃ = − Γ̃L + Γ̃H

2
t̃+ it̃

δm2

σω̃
.

(21)

In the laboratory frame the two mesons generally have (slightly) different velocities. For

completeness, we have kept the difference between the widths Γ, Γ̃ and energies σω, σω̃ of

these mesons. (In the Υ(4S) rest frame BH and BL, which are produced back-to-back, have

(nearly) identical velocities and in this frame we have ΓH = Γ̃H ,ΓL = Γ̃L, σω = σω̃.) Thus

(20) becomes

|SOÕ|2 =
1

2
e−Γt−Γ̃t̃

{

|AL|2|ÃH |2 + |AH |2|ÃL|2 − ALA
∗
HÃHÃ

∗
Le

iξ − A∗
LAHÃ

∗
HÃLe

−iξ
}

(22)

where

ξ ≡ δm2(t̃/σω̃ − t/σω) . (23)

5 We are being slightly sloppy. A proper treatment would use a local operator to create the B meson from

the vacuum and then follow its propagation. For a width small compared to the mass this propagator is

dominated by a simple pole that is not on the real axis but rather on the second sheet, with an imaginary

part given by the decay width. The net result is the complex exponential in (20).
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We can equally well express ξ in terms of the laboratory frame distances the B mesons

travel, d, d̃: ξ = δm2(d̃/σp̃ − d/σp). Alternatively, we may use the B meson decay times

T, T̃ evaluated in the Υ(4S) rest frame, where σω = σω̃ ≃ σm and ξ = δm(T̃ − T ). To

simplify our results we have ignored the difference in widths between the heavy and light

B mesons, taking ΓL = ΓH ≡ Γ. Only slightly more effort is required to keep track of this

effect.

As our first example we evaluate the mixing probability obtained from measurements in

which we observe one B meson decaying into a final state |O±〉 and the other into a final

state |Õ±〉, each containing a charged lepton. Because there is negligible direct CP violation

in these B decays the various amplitudes are related. The BL meson in (19) may be created

by a local operator of the form p(d̄b) + q(b̄d) where p and q are constants determined by

the requirement that this operator does not also create the BH meson. This leads to the

usual expressions for p and q (with the usual phase freedom). A similar argument shows

that the operator p(d̄b) − q(b̄d) creates only the BH meson. Imposing CP invariance in the

time-development of the operators O±, (CP )O±(CP ) = O∓, yields the relations:

A+
L = A+

H = pA A−
L = −A−

H = qA

Ã+
L = Ã+

H = pÃ Ã−
L = −Ã−

H = qÃ .
(24)

Using these relations in (22) we obtain

|S++|2 = |A|2|Ã|2e−Γt−Γ̃t̃|p|4 sin2 ξ

2

|S−−|2 = |A|2|Ã|2e−Γt−Γ̃t̃|q|4 sin2 ξ

2

|S−+|2 = |A|2|Ã|2e−Γt−Γ̃t̃|p|2|q|2 cos2 ξ

2
.

(25)

In the absence of CP violation |q/p| = 1. The mixing probability χ is then

χ ≡
∫∫ ∞

0
dtdt̃(|S++|2 + |S−−|2)/2

∫∫ ∞

0
dtdt̃(|S++|2/2 + |S−−|2/2 + |S−+|2)

=
x2

2(1 + x2)
, (26)

where x ≡ δm2/(σω Γ) and we have divided by 2 when integrating to avoid double counting

identical final states. In evaluating this integral we have used the fact that Γ σω is Lorentz

invariant so that Γ σω = Γ̃ σω̃. Further, this Lorentz invariance allows the evaluation of x

in the rest frame where δm2/σω = (M2
H −M2

L)/(MH + ML) = δm and Γ = Γ0. Therefore

x = δm/Γ0, and χ is seen to be the usual expression. If the difference in widths of the two

states is taken into account, we obtain χ = (x2 + (δΓ/2Γ)2)/(2(1 + x2)).
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We turn to the time-dependent CP asymmetries in B meson decay. In this case we

tag one of the B mesons via a decay to a charged lepton as before, but then observe the

decay of the other B into a CP eigenstate, f . Our previous analysis continues to apply:

the A amplitudes continue to refer to measurements involving a charged lepton and are still

given by (24). The other amplitudes, now denoted as Af
L,H , refer to the detection of a CP

eigenstate f .

The two amplitudes Af
L, A

f
H are in general independent. It is conventional to define

Af
L,H ≡ pAf ± qĀf = pAf (1 ± λf) , (27)

where λf = (q/p)(Āf/Af). The tagged rates are

|S+f |2 ∝ e−Γt−Γ̃t̃ |p2AAf |2
[

|λf |2 cos2 ξ

2
+ sin2 ξ

2
+ Imλf sin ξ

]

|S−f |2 ∝ e−Γt−Γ̃t̃ |pqAAf |2
[

cos2 ξ

2
+ |λf |2 sin2 ξ

2
− Imλf sin ξ

]

,

(28)

where the tilded quantites refer to the observation of the B meson decaying into the CP

eigenstate f and ξ is given by (23). For the B meson system |p| ≃ |q| and the time-depenent

asymmetry is

af ≡ |S+f |2 − |S−f |2
|S+f |2 + |S−f |2

=
(|λf |2 − 1) cos ξ + 2 Imλf sin ξ

1 + |λf |2
. (29)

Using the value of ξ in the Υ(4S) rest frame this is seen to be the standard expression [24].

Other examples of neutral meson mixing may be treated similarly. The universal formula

(11) allows a ready treatment of all pertinent cases.

IV. CONCLUSIONS

Oscillation phenomena, whether involving neutral mesons or neutrinos, have been widely

studied experimentally. Although attempts to describe the underlying theoretical formalism

are rife in the literature, the arguments used are often obscure, confusing, or simply wrong.

The starting point of many such analyses is a “flavor eigenstate” which is neither an energy

eigenstate nor takes into account the entanglement of the neutrino with other final state

particles. This leads to equal-momentum versus equal-energy controversies, to inappropriate

appeals to “energy–time uncertainty,” and to alleged ambiguities related to the oscillation

phase that are somehow to be resolved by future experiments.
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In this paper, we present a theoretical analysis of oscillation phenomena in a fashion that

is simple, entirely general, and free of ambiguities. The oscillation phase is unambiguously

given by (11), an expression equally applicable for neutrinos and mesons of any energy,

relativistic or not. The occurrence of oscillations requires simply that 1.) the oscillating

particles be observed and 2.) condition (9) be satisfied thus ensuring the overlap of these

particles at the time of their detection.

Our approach to oscillations shows that the variations in decay times observed in the GSI

experiment (where neutrinos from electron capture are not observed) cannot be attributed to

neutrino mass mixing. Furthermore, we point out that our universal criterion is satisfied by

the proposed Raghavan experiment which, if it proves feasible, should enable the observation

of neutrino oscillations.
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