# BAD 2379, version 11 

Collaboration-Wide Review

7 June 2011 to 21 June 2011

Changes since
preliminary result

BAIS/CWR Comments

Primary BAD

Author list
Review Committee

Target
Result type
Supporting BAD(s)
BAD \#1645
Measurement of the branching fractions of the color-suppressed decays B0->D (*)0h0, with h0 = pi0, eta, omage, eta'
2379, version 11
Updated Measurement of the Branching Fractions of Color-Suppressed Decays BObar mesons to D(*)0 piO, eta, omega, and eta_prime and First Measurement of the Polarization for the Decay D*O omega

Prudent, Xavier; Tisserand, Vincent
comm388, members: Cheng, Chih-hsiang; Kim, Peter (chair); Lacker, Heiko M.

Physical Review D

## ${ }_{1}$ BaBar Analysis Document \#2379, Version 11

(Monday June 6, 2011)
${ }_{34}$ C. H. Cheng, D. A. Doll, B. Echenard, K. T. Flood, D. G. Hitlin, P. Ongmongkolkul, F. C. Porter, and A. Y. Rakitin California Institute of Technology, Pasadena, California 91125, USA
R. Andreassen, M. S. Dubrovin, Z. Huard, B. T. Meadows, M. D. Sokoloff, and L. Sun University of Cincinnati, Cincinnati, Ohio 45221, USA
P. C. Bloom, W. T. Ford, A. Gaz, M. Nagel, U. Nauenberg, J. G. Smith, and S. R. Wagner University of Colorado, Boulder, Colorado 80309, USA

## B. Spaan

Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
M. J. Kobel, X. Prudent, K. R. Schubert, and R. Schwierz

Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
D. Bernard and M. Verderi

Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
P. J. Clark and S. Playfer

University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
D. Bettoni ${ }^{a}$, C. Bozzi $^{a}$, R. Calabrese ${ }^{a b}$, G. Cibinetto ${ }^{a b}$, E. Fioravanti ${ }^{a b}$, I. Garzia ${ }^{a b}$, E. Luppi ${ }^{a b}$, M. Munerato ${ }^{a b}$, M. Negrini ${ }^{a b}$, L. Piemontese ${ }^{a}$, and V. Santoro INFN Sezione di Ferrara ${ }^{a}$; Dipartimento di Fisica, Università di Ferrara ${ }^{b}$, I-44100 Ferrara, Italy
R. Baldini-Ferroli, A. Calcaterra, R. de Sangro, G. Finocchiaro,
M. Nicolaci, P. Patteri, I. M. Peruzzi, ${ }^{\dagger}$ M. Piccolo, M. Rama, and A. Zallo INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
R. Contri ${ }^{a b}$, E. Guido ${ }^{a b}$, M. Lo Vetere ${ }^{a b}$, M. R. Monge ${ }^{a b}$, S. Passaggio ${ }^{a}$, C. Patrignani ${ }^{a b}$, and E. Robutti ${ }^{a}$ INFN Sezione di Genova ${ }^{a}$; Dipartimento di Fisica, Università di Genova ${ }^{b}$, I-16146 Genova, Italy
B. Bhuyan and V. Prasad

Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
C. L. Lee and M. Morii

Harvard University, Cambridge, Massachusetts 02138, USA

## A. J. Edwards

Harvey Mudd College, Claremont, California 91711
A. Adametz, J. Marks, and U. Uwer

Universitüt Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
F. U. Bernlochner, M. Ebert, H. M. Lacker, and T. Lueck

Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, D-12489 Berlin, Germany
P. D. Dauncey and M. Tibbetts

Imperial College London, London, SW7 2AZ, United Kingdom
P. K. Behera and U. Mallik

University of Iowa, Iowa City, Iowa 52242, USA
C. Chen, J. Cochran, W. T. Meyer, S. Prell, E. I. Rosenberg, and A. E. Rubin Iowa State University, Ames, Iowa 50011-3160, USA
A. V. Gritsan and Z. J. Guo

Johns Hopkins University, Baltimore, Maryland 21218, USA
N. Arnaud, M. Davier, G. Grosdidier, F. Le Diberder, A. M. Lutz,
B. Malaescu, P. Roudeau, M. H. Schune, A. Stocchi, and G. Wormser Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B. P. 34, F-91898 Orsay Cedex, France

University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
D. N. Brown and C. L. Davis

University of Louisville, Louisville, Kentucky 40292, USA
A. G. Denig, M. Fritsch, W. Gradl, A. Hafner, and E. Prencipe Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany
K. E. Alwyn, D. Bailey, R. J. Barlow, ${ }^{\ddagger}$ G. Jackson, and G. D. Lafferty University of Manchester, Manchester M13 9PL, United Kingdom
R. Cenci, B. Hamilton, A. Jawahery, D. A. Roberts, and G. Simi University of Maryland, College Park, Maryland 20742, USA
C. Dallapiccola

University of Massachusetts, Amherst, Massachusetts 01003, USA
R. Cowan, D. Dujmic, and G. Sciolla

Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
D. Lindemann, P. M. Patel, S. H. Robertson, and M. Schram McGill University, Montréal, Québec, Canada H3A $2 T 8$
P. Biassoni ${ }^{a b}$, A. Lazzaro ${ }^{a b}$, V. Lombardo ${ }^{a}$, N. Neri ${ }^{a b}$, F. Palombo ${ }^{a b}$, and S. Stracka ${ }^{a b}$ INFN Sezione di Milano ${ }^{a}$; Dipartimento di Fisica, Università di Milano ${ }^{b}$, I-20133 Milano, Italy
L. Cremaldi, R. Godang, ${ }^{\S}$ R. Kroeger, P. Sonnek, and D. J. Summers

University of Mississippi, University, Mississippi 38677, USA
X. Nguyen and P. Taras

Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
G. De Nardo ${ }^{a b}$, D. Monorchio ${ }^{a b}$, G. Onorato ${ }^{a b}$, and C. Sciacca ${ }^{a b}$ INFN Sezione di Napoli ${ }^{a}$; Dipartimento di Scienze Fisiche, Università di Napoli Federico $1 I^{b}$, I-80126 Napoli, Italy
G. Raven and H. L. Snoek

NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
C. P. Jessop, K. J. Knoepfel, J. M. LoSecco, and W. F. Wang

University of Notre Dame, Notre Dame, Indiana 46556, USA
K. Honscheid and R. Kass

Ohio State University, Columbus, Ohio 43210, USA
J. Brau, R. Frey, N. B. Sinev, D. Strom, and E. Torrence University of Oregon, Eugene, Oregon 97403, USA

E. Feltresi ${ }^{a b}$, N. Gagliardi ${ }^{a b}$, M. Margoni ${ }^{a b}$, M. Morandin ${ }^{a}$, M. Posocco ${ }^{a}$, M. Rotondo ${ }^{a}$, F. Simonetto ${ }^{a b}$, and R. Stroili ${ }^{a b}$ INFN Sezione di Padova ${ }^{a}$; Dipartimento di Fisica, Università di Padova ${ }^{b}$, I-35131 Padova, Italy E. Ben-Haim, M. Bomben, G. R. Bonneaud, H. Briand, G. Calderini, J. Chauveau, O. Hamon, Ph. Leruste, G. Marchiori, J. Ocariz, and S. Sitt Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France<br>M. Biasini ${ }^{a b}$, E. Manoni ${ }^{a b}$, S. Pacetti ${ }^{a b}$, and A. Rossi ${ }^{a b}$ INFN Sezione di Perugia ${ }^{a}$; Dipartimento di Fisica, Università di Perugia ${ }^{b}$, I-06100 Perugia, Italy

C. Angelini ${ }^{a b}$, G. Batignani ${ }^{a b}$, S. Bettarini ${ }^{a b}$, M. Carpinelli ${ }^{a b}$, ${ }^{\text {a }}$ G. Casarosa ${ }^{a b}$, A. Cervelli ${ }^{a b}$, F. Forti ${ }^{a b}$, M. A. Giorgi ${ }^{a b}$, A. Lusiani ${ }^{a c}$, B. Oberhof ${ }^{a b}$, E. Paoloni ${ }^{a b}$, A. Perez ${ }^{a}$, G. Rizzo ${ }^{a b}$, and J. J. Walsh ${ }^{a}$ INFN Sezione di Pisa ${ }^{a}$; Dipartimento di Fisica, Università di Pisa ${ }^{b}$; Scuola Normale Superiore di Pisa ${ }^{c}$, I-56127 Pisa, Italy

D. Lopes Pegna, C. Lu, J. Olsen, A. J. S. Smith, and A. V. Telnov<br>Princeton University, Princeton, New Jersey 08544, USA

F. Anulli ${ }^{a}$, G. Cavoto ${ }^{a}$, R. Faccini ${ }^{a b}$, F. Ferrarotto ${ }^{a}$, F. Ferroni ${ }^{a b}$, M. Gaspero ${ }^{a b}$, L. Li Gioi ${ }^{a}$, M. A. Mazzoni ${ }^{a}$, and G. Piredda ${ }^{a}$

INFN Sezione di Roma ${ }^{a}$; Dipartimento di Fisica, Università di Roma La Sapienza ${ }^{b}$, I-00185 Roma, Italy
C. Bünger, O. Grünberg, T. Hartmann, T. Leddig, H. Schröder, and R. Waldi Universität Rostock, D-18051 Rostock, Germany
T. Adye, E. O. Olaiya, and F. F. Wilson

Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
S. Emery, G. Hamel de Monchenault, G. Vasseur, and Ch. Yèche CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
D. Aston, D. J. Bard, R. Bartoldus, C. Cartaro, M. R. Convery, J. Dorfan, G. P. Dubois-Felsmann, W. Dunwoodie, R. C. Field, M. Franco Sevilla, B. G. Fulsom, A. M. Gabareen, M. T. Graham, P. Grenier, C. Hast, W. R. Innes, M. H. Kelsey, H. Kim, P. Kim, M. L. Kocian, D. W. G. S. Leith, P. Lewis, S. Li, B. Lindquist, S. Luitz, V. Luth, H. L. Lynch, D. B. MacFarlane, D. R. Muller, H. Neal, S. Nelson, I. Ofte, M. Perl, T. Pulliam, B. N. Ratcliff, A. Roodman, A. A. Salnikov, R. H. Schindler, A. Snyder, D. Su, M. K. Sullivan, J. Va'vra, A. P. Wagner, M. Weaver, W. J. Wisniewski, M. Wittgen, D. H. Wright, H. W. Wulsin, A. K. Yarritu, C. C. Young, and V. Ziegler SLAC National Accelerator Laboratory, Stanford, California 94309 USA

W. Park, M. V. Purohit, R. M. White, and J. R. Wilson University of South Carolina, Columbia, South Carolina 29208, USA

A. Randle-Conde and S. J. Sekula

Southern Methodist University, Dallas, Texas 75275, USA
M. Bellis, J. F. Benitez, P. R. Burchat, and T. S. Miyashita Stanford University, Stanford, California 94305-4060, USA
M. S. Alam and J. A. Ernst

State University of New York, Albany, New York 12222, USA
R. Gorodeisky, N. Guttman, D. R. Peimer, and A. Soffer Tel Aviv University, School of Physics and Astronomy, Tel Aviv, 69978, Israel

R. Eckmann, J. L. Ritchie, A. M. Ruland, C. J. Schilling, R. F. Schwitters, and B. C. Wray University of Texas at Austin, Austin, Texas 78712, USA<br>J. M. Izen and X. C. Lou<br>University of Texas at Dallas, Richardson, Texas 75083, USA<br>F. Bianchi ${ }^{a b}$ and D. Gamba ${ }^{a b}$<br>INFN Sezione di Torino ${ }^{a}$; Dipartimento di Fisica Sperimentale, Università di Torino ${ }^{b}$, I-10125 Torino, Italy<br>L. Lanceri ${ }^{a b}$ and L. Vitale ${ }^{a b}$<br>INFN Sezione di Trieste ${ }^{a}$; Dipartimento di Fisica, Università di Trieste ${ }^{b}$, I-34127 Trieste, Italy<br>F. Martinez-Vidal and A. Oyanguren<br>IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain<br>H. Ahmed, J. Albert, Sw. Banerjee, H. H. F. Choi, G. J. King, R. Kowalewski,<br>M. J. Lewczuk, C. Lindsay, I. M. Nugent, J. M. Roney, R. J. Sobie, and N. Tasneem<br>University of Victoria, Victoria, British Columbia, Canada V8W 3P6<br>T. J. Gershon, P. F. Harrison, T. E. Latham, and E. M. T. Puccio<br>Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom<br>H. R. Band, S. Dasu, Y. Pan, R. Prepost, and S. L. Wu<br>University of Wisconsin, Madison, Wisconsin 53706, USA<br>(The BABAR Collaboration)<br>(Dated: June 6, 2011)

We report results on the updated branching fraction $(\mathcal{B})$ measurements of the color-suppressed decays $\bar{B}^{0} \rightarrow D^{0} \pi^{0}, D^{* 0} \pi^{0}, D^{0} \eta, D^{* 0} \eta, D^{0} \omega, D^{* 0} \omega, D^{0} \eta^{\prime}$, and $D^{* 0} \eta^{\prime}$. We measure the branching fractions $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{0} \pi^{0}\right)=(2.69 \pm 0.09 \pm 0.13) \times 10^{-4}, \mathcal{B}\left(\bar{B}^{0} \rightarrow D^{* 0} \pi^{0}\right)=(3.05 \pm 0.14 \pm 0.28) \times 10^{-4}$, $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{0} \eta\right)=(2.53 \pm 0.09 \pm 0.11) \times 10^{-4}, \mathcal{B}\left(\bar{B}^{0} \rightarrow D^{* 0} \eta\right)=(2.69 \pm 0.14 \pm 0.23) \times 10^{-4}$, $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{0} \omega\right)=(2.57 \pm 0.11 \pm 0.14) \times 10^{-4}, \mathcal{B}\left(\bar{B}^{0} \rightarrow D^{* 0} \omega\right)=(4.55 \pm 0.24 \pm 0.39) \times 10^{-4}, \mathcal{B}\left(\bar{B}^{0} \rightarrow\right.$ $\left.D^{0} \eta^{\prime}\right)=(1.48 \pm 0.13 \pm 0.07) \times 10^{-4}$, and $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{* 0} \eta^{\prime}\right)=(1.49 \pm 0.22 \pm 0.15) \times 10^{-4}$. We also present the first measurement of the longitudinal fraction of the channel $D^{* 0} \omega, f_{L}=(66.5 \pm 4.7 \pm 1.5) \%$. In the above, the first uncertainty is statistical and the second is systematic. The results are based on a sample of $(454 \pm 5) \times 10^{6} B \bar{B}$ pairs collected at the $\Upsilon(4 S)$ resonance from 1999 to 2007 , with the BABAR detector at the PEP-II storage rings at SLAC. The measurements are the most precise determinations of these quantities from a single experiment. They are compared to theoretical predictions obtained by factorization, Soft Collinear Effective Theory (SCET) and perturbative QCD (pQCD). We find that the presence of final state interactions is favored and the measurements are in better agreement with SCET when compared to pQCD.

PACS numbers: $13.25 . \mathrm{Hw}, 12.15 . \mathrm{Hh}, 11.30 . \mathrm{Er}$

Now at Temple University, Philadelphia, Pennsylvania 19122, USA
$\dagger$ Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
$\ddagger$ Now at the University of Huddersfield, Huddersfield HD1 3DH, UK
§ Now at University of South Alabama, Mobile, Alabama 36688, USA
ฯ Also with Università di Sassari, Sassari, Italy

## I. INTRODUCTION

Weak decays of hadrons provide a direct access to the parameters of the Cabibbo-Kobayashi-Maskawa (CKM) matrix and thus to the study of $C P$ violation. Strong interaction scattering in the final state [1] (Final State Interactions, or FSI) can modify the decay dynamics and 9 must be well understood. The two-body hadronic decays with a charmed final state, $B \rightarrow D^{(*)} h$, where $h$ is a light meson, are of great help in studying strong-interaction physics related to the confinement of quarks and gluons 3 into hadrons.

The decays $B \rightarrow D^{(*)} h$ can proceed through the emis-


FIG. 1. External (a) and internal (b) tree diagrams for $\bar{B}^{0} \rightarrow$ $D^{(*)} h$ decays.

In the factorization model [3-6], the non-factorizable ${ }^{262}$ interactions in the final state by soft gluons are neglected. The matrix element in the effective weak Hamiltonian of the decay $B \rightarrow D h$ is then factorized into a product of asymptotic states. Factorization appears to be successful in the description of the color-favored decays [7].
The color-suppressed $b \rightarrow c$ decays $\bar{B}^{0} \rightarrow D^{(*) 0} \pi^{0}$ were first observed by the CLEO [8] and Belle [9] collaborations in 2001 with respectively $9.67 \times 10^{6}$ and $23.1 \times 10^{6} B \bar{B}$ pairs. The Belle collaboration has also observed the decays $D^{0} \eta$ and $D^{0} \omega$ and put upper limits on the branching fraction $(\mathcal{B})$ of $D^{* 0} \eta$ and $D^{* 0} \omega$ [9].

The $\mathcal{B}$ of the color-suppressed decays $\bar{B}^{0} \rightarrow D^{(*) 0} \pi^{0}$, $D^{(*) 0} \eta, D^{(*) 0} \omega$, and $D^{0} \eta^{\prime}$ were measured by BABAR [10] in 2003 with $88 \times 10^{6} B \bar{B}$ pairs and an upper limit was set on $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{* 0} \eta^{\prime}\right)$. The Belle collaboration updated with $152 \times 10^{6} B \bar{B}$ pairs the measurement of $\mathcal{B}\left(\bar{B}^{0} \rightarrow\right.$ $\left.D^{(*) 0} h^{0}\right), h^{0}=\pi^{0}, \eta, \omega$, and $\eta^{\prime}$ [11] in 2005 and [12] in 2006 and studied in 2007 the decays $\bar{B}^{0} \rightarrow D^{0} \rho^{0}$ with $388 \times 10^{6} B \bar{B}$ pairs [13]. In an alternative approach, BABAR [14] used the charmless neutral $B$ to $K^{ \pm} \pi^{\mp} \pi^{0}$ Dalitz plot analysis with $232 \times 10^{6} B \bar{B}$ pairs, and found $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{0} \pi^{0}\right)$ to be in excellent agreement with earlier experimental results.
Many of these branching fraction measurements are significantly larger than predictions obtained within the 286 factorization approximation [15]. It is also well agreed ${ }_{287}$ that non-factorizable contributions are mostly dominant for color-suppressed charmed $B$ decays and therefore can
sion of a $W^{ \pm}$boson following three possible diagrams: external, internal (see Fig. 1), or by a $W^{ \pm}$boson ex- ${ }^{2}$ change whose contribution is much smaller [2]. The neutral $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$ decays proceed through the internal diagrams [3]. Since mesons are color singlet objects, in internal diagrams $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$ the quarks from the $W^{ \pm}$decay are constrained to have the anti-color of the spectator quark, which induces a suppression of internal diagrams in comparison with external ones. For this reason, internal diagrams are called color-suppressed and external ones are called color-favored. $B \bar{B}$ threshold, is used to study background contributions from continuum events $e^{+} e^{-} \rightarrow q \bar{q}(q=u, d, s, c)$. We
call that latter data set off-peak events in what follows.
Samples of simulated Monte Carlo (MC) events were used to determine signal and background characteristics, to optimize selection criteria and to evaluate efficiencies. Simulated events $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B^{+} B^{-}, B^{0} \bar{B}^{0}$, $e^{+} e^{-} \rightarrow q \bar{q}(q=u, d, s)$ and $e^{+} e^{-} \rightarrow c \bar{c}$ are generated with EvtGen [26], which interfaces to Pythia [27] and Jetset [28].
Separate samples of exclusive $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$ decays were generated to study the signal features and to quantify the signal selection efficiencies. We use high statistics control samples of exclusive decays $B^{-} \rightarrow D^{(*)} \pi^{-}$ and $D^{(*) 0} \rho^{-}$for the specific selections and background studies. Those control samples have been generated in the Monte Carlo simulation and similarly selected in the data. All MC samples include simulation of the BABAR detector response generated through Geant4 [29]. The integrated luminosity of the MC samples is about three times the data luminosity for $B \bar{B}$, one times the data luminosity for $e^{+} e^{-} \rightarrow q \bar{q}(q=u, d, s)$ and two times for $e^{+} e^{-} \rightarrow c \bar{c}$. The equivalent integrated luminosities of 362 the exclusive $B$ decay mode simulations range from 50 to 2500 times the data luminosity.

## III. ANALYSIS METHOD

## A. General considerations

The color-suppressed $\bar{B}^{0}$ meson decay modes are reconstructed from $D^{(*) 0}$ meson candidates that are combined with light neutral-meson candidates $h^{0}\left(\pi^{0}, \eta, \omega\right.$, and $\eta^{\prime}$ ). The $D^{(*)}$ and $h^{0}$ mesons are detected in various possible channels. In total, we consider 72 different $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$ decay modes.
We perform a blind analysis: the optimization of the various event selections, the background characterizations and rejections, the efficiency calculations, and most of the systematic uncertainties computations are based on studies done with MC simulations, data sidebands, or data control samples. The fits to data, including the various signal regions, are only effected after all analysis procedures are determined and systematic uncertainties are studied.
Intermediate resonances of the decays $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$ are reconstructed by combining tracks and/or photons for the channels with the highest decay rate and detection efficiency. Vertex constraints are applied to charged daughter particles of these resonances before computing their invariant masses. At each step in the decay chain we require that mesons have masses consistent with their assumed particle type. If daughter particles are produced in the decay of a parent meson with a natural width that is small relative to the reconstructed width (except for $\omega$ and $\rho^{0}$ mesons), we constrain the meson's mass to its nominal value [25]. This fitting technique improves the resolution of the energy and the momentum of the $\bar{B}^{0}$

The $\eta$ mesons are reconstructed in the $\gamma \gamma$ and $\pi^{+} \pi^{-} \pi^{0}$ decay modes. These modes account for about $62 \%$ of the total decay rate [25], and may originate from $\bar{B}^{0} \rightarrow{ }^{445}$ $D^{(*)} \eta$ or $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta$ decays.
The $\eta \rightarrow \gamma \gamma$ candidates are reconstructed by combin- ${ }^{446}$ ing two photons that satisfy $E(\gamma)>200 \mathrm{MeV}$ for $\bar{B}^{0}{ }_{447}$ daughters and $E(\gamma)>180 \mathrm{MeV}$ for $\eta^{\prime}$ daughters. As 448 photons originating from high momentum $\pi^{0}$ mesons may 449 fake a $\eta \rightarrow \gamma \gamma$ signal, a veto is applied against those $\pi^{0}: 450$ for each $\eta \rightarrow \gamma \gamma$ candidate, if any of the other photons in the events with $E(\gamma)>200 \mathrm{MeV}$ combined with either photon in $\eta$ has an invariant mass between 115 and $150 \mathrm{MeV} / c^{2}$, the $\eta$ candidate is rejected. Such a veto is highly efficient on signal (about 91-95\%) while it reduces the background of fake $\eta$ mesons candidates by a factor of two. The resolution of the $\eta \rightarrow \gamma \gamma$ mass distribution is approximately $15 \mathrm{MeV} / c^{2}$, dominated by the resolution on the photon energy measurement in the EMC.

For $\eta$ candidates reconstructed in the channel $\pi^{+} \pi^{-} \pi^{0}$, ${ }^{458}$ the $\pi^{0}$ is required to satisfy the conditions described in Sec. III B 1. The mass resolution is about $3 \mathrm{MeV} / c^{2}$, which is smaller than for the mode $\eta \rightarrow \gamma \gamma$, thanks to the relatively better resolution of the tracking system and the various vertex and mass constraints applied to the $\eta$ and $\pi^{0}$ candidates.
3. $\omega$ selection

The $\omega$ mesons are reconstructed in the $\pi^{+} \pi^{-} \pi^{0}$ decay mode. These modes account for approximately $89 \%$ of the total decay rate. The $\pi^{0}$ is required to satisfy the conditions described in Sec. IIIB1 and the transverse momentum of the charged pions must be greater than $200 \mathrm{MeV} / c$. The natural width of the $\omega$ mass distribution $\Gamma \sim 8.49 \mathrm{MeV}[25]$ is comparable to the experimental resolution $\sigma \sim 7 \mathrm{MeV} / c^{2}$, therefore the $\omega$ mass is not constrained to its nominal value. We define a total width $\sigma_{t o t}=\sqrt{\sigma^{2}+\Gamma^{2} / c^{2}} \sim 11 \mathrm{MeV} / c^{2}$ and require the $\omega$ candidates to satisfy $\left|m(\omega)-m(\omega)_{\text {mean }}\right|<2.5 \sigma_{t o t}$.

$$
\text { 4. } \quad \rho^{0} \text { selection }
$$

The $\rho^{0}$ mesons originate from $\eta^{\prime} \rightarrow \rho^{0} \gamma$ and are reconstructed in the $\pi^{+} \pi^{-}$decay mode. The charged tracks must satisfy $p_{T}\left(\pi^{ \pm}\right)>100 \mathrm{MeV} / c$. We define the helicity angle $\theta_{\rho^{\circ}}$ as the angle between the pion momen- ${ }^{483}$ tum in the $\rho^{0}$ rest frame and the $\rho^{0}$ momentum in the ${ }_{484}$ $\eta^{\prime}$ rest frame. Because the $\rho^{0}$ meson is a vector me- ${ }_{485}$ son and the charged pions are pseudo-scalar mesons, the angular distribution is proportional to $\sin ^{2}\left(\theta_{\rho^{0}}\right)$ for $\operatorname{sig}$ nal, and is flat for background. The $\rho^{0}$ candidates with $\left|\cos \left(\theta_{\rho^{0}}\right)\right|>0.73$ are rejected. Due to the large $\rho^{0}$ nat- ${ }^{489}$ ural width $\Gamma \sim 149.1 \mathrm{MeV}$ [25], no mass constraint is 490 applied to the $\rho^{0}$. The mass of the $\rho^{0}$ candidate must be 491

The $\eta^{\prime}$ mesons are reconstructed in the $\pi^{+} \pi^{-} \eta(\rightarrow \gamma \gamma)$ and $\rho^{0} \gamma$ decay modes. These modes account for approximately $46.3 \%$ of the total decay rate.

Only the $\eta \rightarrow \gamma \gamma$ sub-mode is used in the $\pi^{+} \pi^{-} \eta$ reconstruction due to its higher efficiency. The selection is described in Sec. III B 2. For candidates reconstructed in $\rho^{0} \gamma$, channel we select $\rho^{0}$ as described in Sec. III B 4, and the photons must have an energy larger than 200 MeV . As photons coming from $\pi^{0}$ decays may fake signal, a 5 veto against $\pi^{0}$ as described in Sec. III B 2 is applied. The $\eta^{\prime}$ mass resolution is about $3 \mathrm{MeV} / c^{2}$ for $\pi^{+} \pi^{-} \eta$ and $8 \mathrm{MeV} / c^{2}$ for $\rho^{0} \gamma$.

## 6. $K_{S}^{0}$ selection

The $K_{s}^{0}$ mesons are reconstructed through their decay to two charged pions $\left(\pi^{-} \pi^{+}\right)$which must originate from a common vertex. These modes account for $69 \%$ of the total decay rate. The $\chi^{2}$ probability of the vertex fit of the pair of charged pions must be larger than $0.1 \%$. We define the flight significance as the ratio $L / \sigma_{L}$, where $L$ is the $K_{S}^{0}$ flight length in the plane transverse to the beam axis and $\sigma_{L}$ is the resolution on $L$ determined from the vertex fit constraint. The combinatorial background is rejected by requiring a flight significance larger than 5 . The reconstructed $K_{S}^{0}$ mass resolution is about $2 \mathrm{MeV} / c^{2}$ for a core Gaussian part corresponding to about $70 \%$ of the candidates and $5 \mathrm{MeV} / c^{2}$ for the remaining part, depending on the transverse position of the decay of the $K_{S}^{0}$ within the tracking system (SVT or DCH ).

## 7. $D^{0}$ selection

The $D^{0}$ mesons are reconstructed in the $K^{-} \pi^{+}$, $K^{-} \pi^{+} \pi^{0}, \quad K^{-} \pi^{+} \pi^{-} \pi^{+}$, and $K_{s}^{0} \pi^{+} \pi^{-}$decay modes. These modes account for about $29 \%$ of the total decay rate. All $D^{0}$ candidates must satisfy $p^{*}\left(D^{0}\right)>$ 1.1 $\mathrm{GeV} / c$, where $p^{*}$ refers to the value of the momentum computed in the $\Upsilon(4 S)$ rest frame. That requirement is loose enough so that various sources of background can populate the sidebands of the signal region.

For the decay modes reconstructed only with tracks, we require that the charged pions originated from the $D^{0}$ candidates must fulfill $p_{T}\left(\pi^{ \pm}\right)>400 \mathrm{MeV} / c$ for $K^{-} \pi^{+}$, $p_{T}\left(\pi^{ \pm}\right)>100 \mathrm{MeV} / c$ for $K^{-} \pi^{+} \pi^{-} \pi^{+}$, and $p_{T}\left(\pi^{ \pm}\right)>$ $120 \mathrm{MeV} / c$ for $K_{S}^{0} \pi^{-} \pi^{+}$. Where $p_{T}$ is the transverse component to the beam axis of the momentum computed in the laboratory.

The charged tracks must originate from a common vertex, therefore the $\chi^{2}$ probability of the vertex fit must
be larger than $0.1 \%$ for the channel $K^{-} \pi^{+}$and larger ${ }_{540}$ energy in the CM frame: than $0.5 \%$ for the other modes with more abundant background. Because of the increasing level of background present for the various decay modes, the kaon candidates must satisfy from looser to tighter PID criteria for respectively the modes $K^{-} \pi^{+}, K^{-} \pi^{+} \pi^{-} \pi^{+}$, and $K^{-} \pi^{+} \pi^{0}$. For $K_{S}^{0} \pi^{+} \pi^{-}$, the $K_{S}^{0}$ candidates must satisfy the selection criteria described in Sec. IIIB 6.
For the decay $D^{0}$ to $K^{-} \pi^{+} \pi^{0}$ the combinatorial background can significantly be reduced by using the parametrization of the $K^{-} \pi^{+} \pi^{0}$ Dalitz distribution as provided by the Fermilab E691 experiment [31]. This distribution is dominated by the two $K^{*}$ resonances $\left(K^{* 0} \rightarrow K^{-} \pi^{+}\right.$or $\left.K^{*-} \rightarrow K^{-} \pi^{0}\right)$ and by the $\rho^{+}\left(\pi^{+} \pi^{0}\right)$ resonance. Therefore we select only $D^{0}$ candidates that fall in the enhanced region of the Dalitz plot as determined by the above parametrization. The $\pi^{0}$ must satisfy the selections described in Sec. III B 1.

The reconstructed $D^{0}$ mass resolution is about $5,5.5$, 6.5 , and $11 \mathrm{MeV} / c^{2}$ for the decay mode $K^{-} \pi^{+} \pi^{-} \pi^{+}$, $K_{S}^{0} \pi^{+} \pi^{-}, K^{-} \pi^{+}$, and $K^{-} \pi^{+} \pi^{0}$ modes, respectively.

$$
\text { 8. } D^{* 0} \text { selection }
$$

The $D^{* 0}$ mesons are reconstructed in $D^{0} \pi^{0}$ and $D^{0} \gamma$ decay modes. The $\pi^{0}$ and $D^{0}$ candidates are requested to satisfy the selections described in Sec. III B 1 and III B 7 respectively. The photons from $D^{* 0} \rightarrow D^{0} \gamma$ must fulfill the additional condition $E(\gamma)>130 \mathrm{MeV}$ and must pass the veto against $\pi^{0}$ mesons as described in Sec. IIIB 2 .
The resolution of the mass difference $\Delta m \equiv m\left(D^{* 0}\right)-$ $m\left(D^{0}\right)$ is about $1.3 \mathrm{MeV} / c^{2}$ for $D^{0} \pi^{0}$ and $7 \mathrm{MeV} / c^{2}$ for $D^{0} \gamma$.

## C. Selection of $B$-meson candidates

The $B$ candidates are reconstructed by combining a $D^{(*) 0}$ with an $h^{0}$, with the $D^{(*) 0}$ and $h^{0}$ masses constrained to their nominal value except when $h^{0}$ is an $\omega$. One needs to discriminate between real $B$ signal candidates and fake B candidates. The fake B candidates are originated from combinatorial backgrounds, or from other specific $B$ modes or from the cross feed in between the similar studied color-suppressed signals.

1. B-mesons kinematic variables

Two kinematic variables are used in BABAR to select $B$ candidates: the energy-substituted mass $m_{\mathrm{ES}}$ and the energy difference $\Delta E$. These two variables use the constraints from the precise knowledge of the beam ener- 577 gies and from energy conservation in the two-body decay 578 $\Upsilon(4 S) \rightarrow B \bar{B}$. The quantity $m_{\mathrm{ES}}$ is the invariant mass of 579 the $B$ candidate where the $B$ energy is set to the beam ${ }^{580}$ configurations: tinuum background. didate.

$$
\begin{equation*}
m_{\mathrm{ES}}=\sqrt{\left(\frac{s / 2+\vec{p}_{0} \cdot \vec{p}_{B}}{E_{0}}\right)^{2}-\left|\vec{p}_{B}\right|^{2}} \tag{1}
\end{equation*}
$$

and $\Delta E$ is the energy difference between the reconstructed $B$ energy and the beam energy in the CM frame:

$$
\begin{equation*}
\Delta E=E_{D^{(*)}}^{*}+E_{h}^{*}-\sqrt{s} / 2 \tag{2}
\end{equation*}
$$

${ }_{3}$ where $\sqrt{s}$ is the $e^{+} e^{-}$center-of-mass energy. The small 54 variations of the beam energy over the duration of the 545 run are taken into account when calculating $m_{\mathrm{ES}}$. For 6 the momentum $\vec{p}_{i}(i=0, B)$ and the energy $E_{0}$, the subscripts 0 and $B$ refer to the $e^{+} e^{-}$system and the ${ }_{58}$ reconstructed $B$ meson, respectively. The energies $E_{D^{(*)}}^{*}$ 9 and $E_{h}^{*}$ are calculated from the measured $D^{(*) 0}$ and $h^{0}$ 50 momenta.

For the various channels of the $B$ signal events, the $m_{\mathrm{ES}}$ distribution peaks at the $B$ mass with a resolution of $2.6-3 \mathrm{MeV} / c^{2}$, dominated by the beam energy spread, whereas $\Delta E$ peaks near zero with a resolution of $15-$ 50 MeV depending on the number of photons in the final state.

## 2. Rejection of $e^{+} e^{-} \rightarrow q \bar{q}$ background

The continuum background $e^{+} e^{-} \rightarrow q \bar{q}$, where the light quarks $q$ are $u, d, s$ or $c$ quarks, creates high momentum mesons $D^{(*) 0}, \pi^{0}, \eta^{(')}, \omega$ that can fake the signal mesons originating from the two body decays $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$. That background is dominated by $c \bar{c}$ processes and to a lesser extent by $s \bar{s}$ processes. Since the $B$ mesons are produced almost at rest in the $\Upsilon(4 S)$ frame, the $\Upsilon(4 S) \rightarrow B \bar{B}$ event shape is spherical. By comparison, the $q \bar{q}$ events have a back-to-back jet-like shape. The $q \bar{q}$ background is therefore discriminated by employing event shape variables. The following set of variables was found to be optimal among various tested

- The thrust angle $\theta_{T}$ defined as the angle between the thrust axis of the $B$ candidate and the thrust axis of the rest of event. The distribution of $\left|\cos \left(\theta_{T}\right)\right|$ is flat for signal and peaks at 1 for con-
- Event shape monomials $L_{0}$ and $L_{2}$ defined as:

$$
\begin{equation*}
L_{0}=\sum_{i} p_{i}^{*} ; L_{2}=\sum_{i} p_{i}^{*}\left|\cos \left(\theta_{i}^{*}\right)\right|^{2} \tag{3}
\end{equation*}
$$

with $p_{i}^{*}$ the CM momentum of the particle $i$ that does not come from a $B$ candidate, and $\theta_{i}^{*}$ is the angle between $p_{i}^{*}$ and the thrust axis of the $B$ can-

- The polar angle $\theta_{B}^{*}$ between the $B$ momentum in ${ }_{631}$ the $\Upsilon(4 S)$ frame and the beam axis. The $\Upsilon(4 S){ }_{632}$ being vector and the $B$ mesons being pseudoscalar, the angular distribution is proportional to $\sin ^{2}\left(\theta_{B}^{*}\right)$ for signal and roughly flat for background.

These four discriminating variables are combined in a Fisher discriminant built with the TMVA [32] toolkit package. An alternate approach employing a multilayers perception artificial neural network with two hidden layer within the same framework was tested and showed marginal relative gain, therefore the Fisher discriminant is used.
The Fisher discriminant $\mathcal{F}_{\text {shape }}$ is trained with signal MC events and off-peak data events. In order to maximize the number of off-peak events all the $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$ modes are combined. We retain signal MC events with $m_{\mathrm{ES}}$ in the signal region $5.27-5.29 \mathrm{MeV} / c^{2}$ and off-peak data events with $m_{\mathrm{ES}}$ in the range $5.25-5.27 \mathrm{MeV} / c^{2}$, accounting for half of the 40 MeV CM energy shift below the $\Upsilon(4 S)$ resonance. The training and testing of the multivariate classifier are performed with the nonoverlapping data samples of equal size obtained from a cocktail of 20000 MC simulation signal events and from 20000 off-peak events. The obtained Fisher formula is:

$$
\begin{array}{r}
\mathcal{F}_{\text {shape }}=2.36-1.18 \times\left|\cos \left(\theta_{T}\right)\right|+ \\
0.20 \times L_{0}-1.01 \times L_{2}-0.80 \times\left|\cos \left(\theta_{B}^{*}\right)\right| . \tag{4}
\end{array}
$$

The $q \bar{q}$ background is reduced by applying a selection cut on $\mathcal{F}_{\text {shape }}$. The selection is optimized for each of the 72 possible $\bar{B}^{0}$ signal modes by maximizing the statistical significance with signal MC against generic MC $e^{+} e^{-} \rightarrow$ $q \bar{q}, q \neq b$. This requirement for the various decay modes retains between about $30 \%$ and $97 \%$ of $B$ signal events, while rejecting between about $98 \%$ and $35 \%$ of the light $q \bar{q}$ pairs background.

## 3. Rejection of other specific backgrounds

The $\omega$ mesons in $\bar{B}^{0} \rightarrow D^{0} \omega$ decays are longitudinally polarized. We define the normal angle $\theta_{N}[10,33]$ as the the angle between the normal to the plane of the three daughter pions in the $\omega$ frame and the line-of-flight of 669 the $\bar{B}^{0}$ meson in the $\omega$ rest frame. That definition is the equivalent of the two-body helicity angle for the threebody decay. To describe the three-body decay distribution of $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$, we define the Dalitz angle $\theta_{D}$ [10] as the angle between the $\pi^{0}$ momentum in the $\omega$ frame and the $\pi^{+}$momentum in the frame of the pair of charged pions.
The signal distribution is proportional to $\cos ^{2}\left(\theta_{N}\right)$ and $\sin ^{2}\left(\theta_{D}\right)$, while the combinatorial background distribution is roughly flat as a function of $\cos \left(\theta_{N}\right)$ and $\cos \left(\theta_{D}\right)$. These two angles are combined in a Fisher discriminant $\mathcal{F}_{\text {hel }}$ built from signal MC events and generic $q \bar{q}$ and $B \bar{B}$ MC events:

We require $\bar{B}^{0} \rightarrow D^{0} \omega$ candidates to satisfy $\mathcal{F}_{h e l}>-0.1$, to obtain an efficiency (rejection) on signal (background) of about $85 \%$ ( $62 \%$ ).

We also exploit the angular distribution properties in 5 the decay $D^{* 0} \rightarrow D^{0} \pi^{0}$ to reject combinatorial back6 ground. We define the helicity angle $\theta_{D^{*}}$ as the an7 gle between the line-of-flight of the $D^{0}$ and that of the $D^{* 0}$, both evaluated in the $D^{* 0}$ rest frame. The an9 gular distribution is proportional to $\cos ^{2}\left(\theta_{D^{*}}\right)$ for signal and roughly flat for combinatorial background. Although in principle such a behavior could be employed for $\bar{B}^{0} \rightarrow D^{* 0} \pi^{0}, D^{* 0} \eta$, and $D^{*} \eta^{\prime}$, a selection on $\left|\cos \left(\theta_{D^{*}}\right)\right|$ significantly improves the statistical significance for the $\bar{B}^{0} \rightarrow D^{* 0} \pi^{0}$ mode only. Therefore $D^{* 0}$ candidates coming from the decay $\bar{B}^{0} \rightarrow D^{* 0} \pi^{0}$ are required to satisfy $\left|\cos \left(\theta_{D^{*}}\right)\right|>0.4$ with an efficiency (rejection) on signal (background) of about $91 \%$ ( $33 \%$ ).

A major $B \bar{B}$ background contribution in the analysis of the $\bar{B}^{0} \rightarrow D^{(*) 0} \pi^{0}$ channel comes from the colorallowed decay $B^{-} \rightarrow D^{(*) 0} \rho^{-}$. If the charged pion 1 (mostly slow) from the decay $\rho^{-} \rightarrow \pi^{-} \pi^{0}$ is omitted in the reconstruction of the $\bar{B}^{0}$ candidate, $B^{-} \rightarrow D^{(*) 0} \rho^{-}$ events can mimic the $D^{(*) 0} \pi^{0}$ signal. Moreover, the $\mathcal{B}\left(B^{-} \rightarrow D^{(*) 0} \rho^{-}\right)$are $30-50$ times larger than that of the $\bar{B}^{0} \rightarrow D^{(*) 0} \pi^{0}$ modes, and not precisely known $(\delta \mathcal{B} / \mathcal{B}=13.4 \%-17.3 \%[25])$. A veto is applied to reduce this background. For each $\bar{B}^{0} \rightarrow D^{(*) 0} \pi^{0}$ candidate, we combine any remaining negatively charged track in 59 the event to reconstruct a $B^{-}$candidate in the decay mode $D^{(*) 0} \rho^{-}$. If the reconstructed $B^{-}$candidate satisfies $m_{\mathrm{ES}}\left(B^{-}\right)>5.27 \mathrm{GeV} / c^{2},\left|\Delta E\left(B^{-}\right)\right|<100 \mathrm{MeV}$, and $\left|m\left(\rho^{-}\right)-m\left(\rho^{-}\right)_{\text {PDG }}\right|<250 \mathrm{MeV} / c^{2}$, then the initial $\bar{B}^{0}$ candidate is rejected. For the analysis of the decay mode $\bar{B}^{0} \rightarrow D^{0} \pi^{0}\left(B^{-} \rightarrow D^{* 0} \pi^{0}\right)$, the veto retains about $90 \%(82 \%)$ of signal and rejects about $67 \%$ $(56 \%)$ of $B^{-} \rightarrow D^{0} \rho^{-}$and $44 \%(66 \%)$ of $B^{-} \rightarrow D^{* 0} \rho^{-}$ background.

## 4. Choice of the "best" B candidate in the event

The average number of $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$ candidate per event after all selections ranges between 1 and 1.6 depending on the complexity of the sub-decays. We keep one $B$ candidate per mode per event. The chosen $B$ is the one with the smallest value of

$$
\begin{align*}
\chi_{B}^{2} & =\left(\frac{m\left(D^{0}\right)-m\left(D^{0}\right)_{\text {mean }}}{\sigma_{m\left(D^{0}\right)}}\right)^{2} \\
& +\left(\frac{m\left(h^{0}\right)-m\left(h^{0}\right)_{\text {mean }}}{\sigma_{m\left(h^{0}\right)}}\right)^{2}, \tag{6}
\end{align*}
$$

$$
\mathcal{F}_{\text {hel }}=-1.41-1.01 \times\left|\cos \left(\theta_{D}\right)\right|+3.03 \times\left|\cos \left(\theta_{N}\right)\right| .(5){ }_{674} \text { for } D^{0} h^{0} \text { modes and of }
$$

$$
\begin{align*}
\chi_{B}^{2} & =\left(\frac{m\left(D^{0}\right)-m\left(D^{0}\right)_{\text {mean }}}{\sigma_{m\left(D^{0}\right)}}\right)^{2} \\
& +\left(\frac{m\left(h^{0}\right)-m\left(h^{0}\right)_{\text {mean }}}{\sigma_{m\left(h^{0}\right)}}\right)^{2} \\
& +\left(\frac{\Delta m-\Delta m_{\text {mean }}}{\sigma_{\Delta m}}\right)^{2}, \tag{7}
\end{align*}
$$

for the $D^{* 0} h^{0}$ modes. The quantities $\sigma_{m_{D^{0}}}$ and $\sigma_{m_{h^{0}}}$ $\left(m\left(D^{0}\right)_{\text {mean }}\right.$ and $\left.m\left(h^{0}\right)_{\text {mean }}\right)$ are the resolution (mean) ${ }^{227}$ of the mass distributions. The quantities $\Delta m_{\text {mean }}$ and ${ }^{728}$ $\sigma_{\Delta m}$ are respectively the mean and resolution of the $\Delta m$ $\left(\equiv m\left(D^{* 0}\right)-m\left(D^{0}\right)\right)$ distributions. These quantities are obtained from fits of the mass distribution of true simulated candidates selected from signal MC simulations.
The probability of choosing the true $\bar{B}^{0}$ candidate in the event according to the above criteria ranges from 71 to $100 \%$. The cases with lower probabilities correspond to the $D^{(*) 0} h^{0}$ modes with high neutral multiplicity.

## 5. Selection efficiencies

The branching fraction of the $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$ decays is computed as:

$$
\begin{equation*}
\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}\right)=\frac{N_{S}}{N_{B \bar{B}} \cdot \mathcal{E} \cdot \mathcal{B}_{s e c}} \tag{8}
\end{equation*}
$$

where $\mathcal{B}_{\text {sec }}$ is the product of the branching fractions associated with the secondary decays of the $D^{(*) 0}$ and $h^{0}$ mesons for the each of the 72 decay channel considered in this paper [25]. $N_{B \bar{B}}$ is the number of $B \bar{B}$ pairs in data and $N_{S}$ is the number of signal events remaining after all the selections. The quantity $\mathcal{E}$ is the total signal efficiency including reconstruction (detector and trigger acceptance) and analysis selections. It is computed from each of the 72 exclusive high statistics MC simulation samples.
The selection efficiency from MC simulation is slightly different from the efficiency in data. The MC efficiency and its systematic uncertainty therefore has to be adjusted according to control samples. For the reconstruction of $\pi^{0} / \gamma$, the efficiency corrections are obtained from detailed studies performed with a high statistics and high purity control sample of $\pi^{0}$ mesons produced in $\tau \rightarrow \rho\left(\pi \pi^{0}\right) \nu_{\tau}$ decays normalized to $\tau \rightarrow \pi \nu_{\tau}$, to unfold tracking effects. Such corrections are validated against studies performed on the relative ratio of the number of detected $D^{0}$ mesons in the decays $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$ and $D^{0} \rightarrow K^{-} \pi^{+}$, and produced in the decay of $D^{*+}$ mesons from $e^{+} e^{-} \rightarrow c \bar{c}$ events. The relative data/simulation efficiency measurements for charged tracks are similarly based on studies of track mis-reconstruction using $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$events. On one side the events are tagged from a lepton in the decay $\tau^{-} \rightarrow l^{-} \bar{\nu}_{l} \nu_{\tau}$ and on the other

The efficiency corrections for the selection criteria applied to $D^{(*) 0}$ candidates and on the Fisher discriminant $\left(\mathcal{F}_{\text {hel }}\right)$ for the continuum $q \bar{q}$ rejection are obtained from studies of a $B^{-} \rightarrow D^{(*) 0} \pi^{-}$control sample. This abundant control sample is chosen for its kinematic similarity with $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$. The corrections are computed from 32 the ratios $\mathcal{E}_{\text {rel }}$. (data) $/ \mathcal{E}_{\text {rel }}(\mathrm{MC})$, where the relative effi${ }_{3}$ ciencies $\mathcal{E}_{\text {rel. }}$. are computed with the signal yields as ob${ }^{4}$ tained from fits to $m_{\mathrm{ES}}$ distributions of $B^{-} \rightarrow D^{(*) 0} \pi^{-}$ ${ }_{35}$ candidates in data and MC simulation, before and af${ }_{36}$ ter applying the various selections. The obtained re${ }_{7}$ sults are checked with the color-allowed control sample \& $B^{-} \rightarrow D^{(*) 0} \rho^{-}$, which has slightly different kinematics 9 due to the relatively higher mass of the $\rho^{-}$, and therefore ${ }^{\circ}$ validates those corrections for the modes such as $D^{(*) 0} \eta^{\prime}$.

The reconstruction efficiency of $\bar{B}^{0} \rightarrow D^{* 0} \omega$ depends 22 on the angular distribution, which is not yet known. To evaluate this efficiency we combine a set of properly weighted fully longitudinally and fully transversely po${ }_{5} 5$ larized MC samples, according to the fraction of longitudinal polarization $\left(f_{L}=66.5 \%\right)$ that we measure in this paper (see Sec. VI).

## D. Fit procedure and data distributions

We present the fits used to extract the branching fractions $\mathcal{B}$. For each of the 72 possible $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$ sub1 decay modes, using an iterative procedure, we fit the $\Delta E$ distribution in the range $-280<\Delta E<280 \mathrm{MeV}$ for ${ }_{53} m_{\mathrm{ES}}>5.27 \mathrm{GeV} / c^{2}$ to get the signal $\left(N_{S}\right)$ and back${ }_{4}$ ground yields. The use of the $\Delta E$ distribution allows 55 us to model and adjust the complex non-combinatoric $B$ background structure without relying completely on simulation.

The data samples corresponding to each $\bar{B}^{0}$ decay mode are disjoint and the fits are performed independently for each mode. According to their physical origin, four categories of events with differently shaped $\Delta E$ 2 distributions are separately considered: signal events, cross-feed events, peaking background events, and combinatorial background events. The event (signal and background) yields are obtained from unbinned extended maximum likelihood (ML) fits. We write the extended likelihood $\mathcal{L}$ as

$$
\begin{equation*}
\mathcal{L}=\frac{e^{-n}}{N!} n^{N} \prod_{j=1}^{N} f\left(\Delta E_{j} \mid \theta, n\right) \tag{9}
\end{equation*}
$$



FIG. 2. Fit of $\Delta E$ distributions in data for modes $\bar{B}^{0} \rightarrow D^{0} \pi^{0}$ (a), $\bar{B}^{0} \rightarrow D^{0} \omega(\mathrm{~b}), \bar{B}^{0} \rightarrow D^{0} \eta(\gamma \gamma)(\mathrm{c}), \bar{B}^{0} \rightarrow D^{0} \eta\left(\pi \pi \pi^{0}\right)(\mathrm{d})$, $\bar{B}^{0} \rightarrow D^{0} \eta^{\prime}(\pi \pi \eta)(\mathrm{e})$, and $\bar{B}^{0} \rightarrow D^{0} \eta^{\prime}\left(\rho^{0} \gamma\right)(\mathrm{f})$. The dots with error bars are data, the blue solid curve is the fitted total PDF, the red dotted curve is the signal PDF, the black dotted-dashed curve is the cross-feed PDF, the brown double dotted-dashed curve is the $B^{-} \rightarrow D^{(*) 0} \rho^{-} \mathrm{PDF}$, and the long blue dashed curve is the combinatorial background PDF.
where $\theta$ indicates the set of parameters which are fit- ${ }_{789} \mathrm{PDF}$ is added to the modes with a large $\Delta E$ resolution to ted from the data. $N$ is the total number of signal and 790 describe mis-reconstructed events. The signal shape pabackground events, and $n=\sum_{i} N_{i}$ is the expectation 791 rameters are estimated from a ML fit to the distributions value for the total number of events. The sum runs over 792 of simulated signal events in the high statistics exclusive the different signal and background categories $i$, which 793 decay modes. PDF and characteristics will be detailed below. The total probability density function (PDF) $f\left(\Delta E_{j} \mid \theta, n\right)$ is written as the sum over the different signal and background ${ }_{794}$ categories

$$
\begin{equation*}
f\left(\Delta E_{j} \mid \theta, n\right)=\frac{\sum_{i} N_{i} f_{i}\left(\Delta E_{j} \mid \theta\right)}{n} \tag{10}
\end{equation*}
$$

where $f_{i}(\Delta E \mid \theta)$ is the PDF of the various $i$ categories: signal or background components. Some of the PDF component parameters are fixed from the MC simulation (see details in the following sections).
The individual corresponding branching ratios are computed and then combined as explained in Sec. V.

## 1. Signal contribution

All of the 72 possible reconstructed $\bar{B}^{0}$ channels contain at least one photon. Due to the possible energy 809 losses of early showering $\gamma$ 's in the detector material be- 810 fore the EMC, the $\Delta E$ shape for signal is modeled by 811 the so-called modified Novosibirsk PDF [30]. A Gaussian ${ }_{812}$ channel $\bar{B}^{0} \rightarrow D^{* 0} h^{0}$ receives a cross-feed contribution from the associated decay mode $\bar{B}^{0} \rightarrow D^{0} h^{0}$ and there is a cross-contamination in between the $D^{* 0} \rightarrow D^{0} \pi^{0}$ and


FIG. 3. Fit of $\Delta E$ distributions in data for modes $\bar{B}^{0} \rightarrow D^{* 0} \pi^{0}$ (a), $\bar{B}^{0} \rightarrow D^{* 0} \omega(\mathrm{~b}), \bar{B}^{0} \rightarrow D^{* 0} \eta(\gamma \gamma)(\mathrm{c}), \bar{B}^{0} \rightarrow D^{* 0} \eta\left(\pi \pi \pi^{0}\right)$ (d), $\bar{B}^{0} \rightarrow D^{* 0} \eta^{\prime}(\pi \pi \eta)(\mathrm{e})$, and $\bar{B}^{0} \rightarrow D^{* 0} \eta^{\prime}\left(\rho^{0} \gamma\right)(\mathrm{f})$ where the $D^{* 0}$ mesons decay into the signal mode $D^{0} \pi^{0}$. A detailed legend is provided in the caption of Fig. 2.
$D^{* 0} \rightarrow D^{0} \gamma$ channels.
The main cross-feed contributions from the other re5 constructed $\bar{B}^{0}$ color-suppressed modes are listed in 826 Table I. For each signal mode, different cross feeds 827 7 are summed and their contribution is estimated with a 828 histogram-based PDF built from the various signal MC samples.

TABLE I. Main cross feeds between signal modes and for a for a given $D^{0}$ decay mode. For a given $D^{* 0} h^{0}$ mode the cross feed coming from the sub-decay $D^{* 0} \rightarrow D^{0} \pi^{0}$ into $D^{* 0} \rightarrow$ $D^{0} \gamma$ is relatively larger than in the mirror case.

| $B$ mode | Cross-feed modes |
| :--- | :---: |
| $D^{0} h^{0}$ | $D^{* 0} h^{0}$ |
| $D^{* 0}\left(D^{0} \pi^{0}\right) h^{0}$ | $D^{* 0}\left(D^{0} \gamma\right) h^{0}, D^{0} h^{0}$ |
| $D^{* 0}\left(D^{0} \gamma\right) h^{0}$ | $D^{* 0}\left(D^{0} \pi^{0}\right) h^{0}, D^{0} h^{0}$ |

## 3. Peaking $B \bar{B}$ background contributions

The major background in the reconstruction of $\bar{B}^{0} \rightarrow{ }_{849}^{849}$ $D^{(*) 0} \pi^{0}$ comes from the decays $B^{-} \rightarrow D^{(*) 0} \rho^{-}$(see ${ }_{850}$ ${ }_{3}$ Sec. III C 3). Their contribution is modeled by a separate ${ }_{851}$
histogram-based PDF built from the high statistics exclusive signal MC simulation samples. The individual distributions of the two backgrounds $B^{-} \rightarrow D^{0} \rho^{-}$and $B^{-} \rightarrow$ $D^{* 0} \rho^{-}$that pass the $\bar{B}^{0} \rightarrow D^{(*) 0} \pi^{0}$ selections, including the specific veto requirement as described in Sec. III C 3, cannot be distinguished. As a consequence, given the large uncertainty on their branching fractions, the overall normalization of $B^{-} \rightarrow D^{(*) 0} \rho^{-}$PDF is left floating but the relative ratio $N\left(B^{-} \rightarrow D^{* 0} \rho^{-}\right) / N\left(B^{-} \rightarrow D^{0} \rho^{-}\right)$ of the PDF normalization is fixed. The value of this ratio is extracted directly from the data by reconstructing exclusively each of the $B^{-} \rightarrow D^{(*) 0} \rho^{-}$modes rejected by the veto requirements. Those fully reconstructed $B^{-}$mesons differ from the $B^{-} \rightarrow D^{(*) 0} \rho^{-}$, that pass all the $\bar{B}^{0} \rightarrow D^{(*) 0} \pi^{0}$ selections, by the additional selected soft charged $\pi$ originated from the $\rho^{-}$meson. The relative correction on that ratio for events surviving the veto selection is then computed using the MC simulation for truly generated $B^{-} \rightarrow D^{(*) 0} \rho^{-}$decays. A systematic 3 uncertainty on that assumption is assigned (see Sec. IV).

In the cases of $\bar{B}^{0} \rightarrow D^{(*) 0} \omega / \eta\left(\rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$ modes, additional contributions come from the $B$ decay modes $D^{(*)} n \pi \pi^{(0)}$, where $n=1,2$, or 3 , and through intermediate resonances such as $\omega$ and $\rho^{\prime-}\left(\rightarrow \omega \pi^{-}\right)$. These peaking backgrounds are modeled by a first-order polynomial PDF plus a Gaussian PDF determined from the generic $B \bar{B} \mathrm{MC}$ simulation. The relative normalization of that Gaussian PDF component is left floating in the


FIG. 4. Fit of $\Delta E$ distributions in data for modes $\bar{B}^{0} \rightarrow D^{* 0} \pi^{0}(\mathrm{a}), \bar{B}^{0} \rightarrow D^{* 0} \omega(\mathrm{~b}), \bar{B}^{0} \rightarrow D^{* 0} \eta(\gamma \gamma)(\mathrm{c}), \bar{B}^{0} \rightarrow D^{* 0} \eta\left(\pi \pi \pi^{0}\right)$ (d), and $\bar{B}^{0} \rightarrow D^{* 0} \eta^{\prime}(\pi \pi \eta)$ (e), where the $D^{* 0}$ mesons decay into the signal mode $D^{0} \gamma$. The unfitted $\Delta E$ distribution of $\bar{B}^{0} \rightarrow D^{* 0}\left(D^{0} \gamma\right) \eta^{\prime}\left(\rho^{0} \gamma\right)$ candidates is also displayed (f). A detailed legend is provided in the caption of Fig. 2.
fit, since the $\mathcal{B}$ of the $B$ decay modes $D^{(*)} n \pi \pi^{(0)}$ are not necessarily precisely known [25].

## 4. Combinatorial background contribution

The shape parameters of the combinatorial background PDFs are obtained from ML fits to the generic $B \bar{B}$ and continuum MC , where all signal, cross feeds and above-discussed peaking $B \bar{B}$ background events have been removed. The combinatorial background from $B \bar{B}$ and $q \bar{q}$ are summed and modeled by a second-order polynomial PDF.

## 5. Iterative fitting procedure

We fit the $\Delta E$ distribution using the PDFs for the signal, for the cross feed, for the peaking background, 891 and for the combinatorial background as detailed in the 892 previous sections. The normalization for the signal, for 893 the peaking $B \bar{B}$ backgrounds, and for the combinatorial 894 background components are allowed to float in the fit. 895 The mean of the signal PDF is left floating for the sum ${ }_{896}$ of $D^{(*) 0}$ sub-decays. For each $D^{0}$ sub-mode, the signal 897 mean PDF is fixed to the value obtained from the fit to 898 the sum of $D^{0}$ sub-modes. Those free parameters are ex- 899 tracted by maximizing the unbinned extended likelihood 900

We check the absence of bias in our fit procedure by studying pseudo-experiments with a large number of different samples for the various signals. The extraction procedure is applied to these samples where background events are generated and added from the fitted PDFs. The signal samples are assembled from non-overlapping samples corresponding to the exclusive high statistics MC signals, with yields corresponding to the MC-generated value of the branching fraction $\mathcal{B}_{\text {gen }}$. No significant biases are found.

## 6. Data distributions and

event yields from summed sub-decay modes

The fitting procedure is applied to data at the very ${ }_{953}$ last stage of the blind analysis. Though the event yields and $\mathcal{B}$ measurements are performed separately for each of the 72 considered sub-decay modes, we illustrate here, in a compact manner, the magnitude of the signal and background component yields and of the statistical significances of the various channels $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$. To do that, we sum together the $D^{0}$ sub-modes. The fitted $\Delta E$ distributions, for the sum of $D^{0}$ sub-modes, are given in Figs. 2, 3, and 4, for respectively the $\bar{B}^{0} \rightarrow D^{0} h^{0}$, $D^{* 0}\left(\rightarrow D^{0} \pi^{0}\right) h^{0}$, and $D^{* 0}\left(\rightarrow D^{0} \gamma\right) h^{0}$ modes.
The signal and background yields obtained from the fit to the summed sub-mode data for the $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$ are presented in Table II, with the corresponding statistical significance. The statistical significance is calculated in the signal region $|\Delta E|<2.5 \sigma$, from the cumulative Poisson probability $p$ to have a background statistical fluctuation reaching the observed data yield:

$$
\begin{equation*}
p=\sum_{k=N_{\text {cand }}}^{+\infty} \frac{e^{-\nu}}{k!} \nu^{k}, \tag{11}
\end{equation*}
$$

where $N_{\text {cand }}$ is the total number of selected candidates in the signal region and $\nu$ the mean value of the total expected background, as extracted from the fit. This probability is then converted into a number of equivalent one-sided standard deviations:

$$
\begin{equation*}
N_{\sigma}=\sqrt{2} \operatorname{erfcInverse}(p / 2), \tag{12}
\end{equation*}
$$

The function erfcInverse is the inverse of the complementary error function of erf (see statistics section in [25]).
The signal and background yields are computed from the fit parameters and integrated in a $\Delta E$ window of $\pm 2.5 \sigma$ (where $\sigma$ is the signal resolution).
The majority of channels present a clear and significant signal. In particular, the modes $D^{0} \eta^{\prime}(\pi \pi \eta(\gamma \gamma))$ and 990 $D^{0} \eta^{\prime}\left(\rho^{0} \gamma\right)$ are observed for the first time.
Before performing the final unblinded fits on data, among the various 72 initial possible decay channels, several sub-decay modes have been discarded. The decisions to remove those sub-modes has been taken according to analyses performed on MC simulation, as no significant signals are expected and confirmed in data (see for example Fig. 4 (bottom right)). The discussed channels are: $\bar{B}^{0} \rightarrow D^{(*) 0} \eta^{\prime}$ and $D^{* 0}\left(D^{0} \gamma\right) \eta\left(\pi \pi \pi^{0}\right)$, where $D^{0} \rightarrow 999$ $K_{S}^{0} \pi^{+} \pi^{-}, D^{* 0}\left(D^{0} \gamma\right) \eta^{\prime}(\pi \pi \eta)$, where $D^{0} \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{+}, 1000$ as well as the whole channel $D^{* 0}\left(D^{0} \gamma\right) \eta^{\prime}\left(\rho^{0} \gamma\right)$. Those 1001 are sub-modes with poor signal efficiency, caused by large 1002 track multiplicity or modest $D^{0}$ secondary $\mathcal{B}$ 's, such that ${ }_{1003}$ the expected signal yields are very low. In addition, much 1004 larger background contributions are expected. We con- 1005 cluded that adding such channels in the global combina- 1006 tions would degrade the $\mathcal{B}$ measurements.

## IV. SYSTEMATIC UNCERTAINTIES ON BRANCHING FRACTIONS

There are several possible sources of systematic uncertainties in this analysis, whose combinations are summarized in Table III.

The categories " $\pi^{0} / \gamma$ detection" and "Tracking" account respectively for the systematics on the reconstruction of $\pi^{0} / \gamma$ and for charged particle tracks, and are taken as the uncertainty on the efficiency correction computed in the studies of $\tau$ decays from $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$events (see Sec. III C 5).

Similarly, the systematic uncertainties on kaon identification and on the reconstruction of $K_{S}^{0}$ mesons are estimated from the uncertainties on MC efficiency corrections computed in the study of pure samples of kaons 6 and $K_{S}^{0}$ mesons compared to data (see Sec. III C 5).

The uncertainty on the secondary $\mathcal{B}$ is a combination of the uncertainties on each $\mathcal{B}$ of the $D^{(*) 0}$ and $h^{0}$ submode (including secondary decays into detected stable particles). Correlations between the different channels were accounted for [25].

The uncertainty related to the number of $B \bar{B}$ pairs and the binomial uncertainty related to the limited available MC samples statistics when computing the efficiency of various selection criteria are also included.

The systematics on the resonance mass selections are computed as the relative difference of signal yield when the values of the mass means and mass resolutions are taken from a fit to the data. The uncertainties for the $q \bar{q}$ rejection and the $D^{(*) 0}$ selections are obtained from the study performed on the control sample $B^{-} \rightarrow D^{(*) 0} \pi^{-}$ and are estimated as the uncertainty on the efficiency correction ratio: $\mathcal{E}_{\text {rel. }}$ (data) $/ \mathcal{E}_{\text {rel. }}$.(MC), including the cor4 relations between the samples before and after selections (see Sec. III C5). The uncertainties for the cuts on $\rho^{0}$ 6 and $D^{0} \omega$ helicities are obtained by varying the selection cut values by $\pm 10 \%$ around the maximum of statistical significance. All uncertainties on resonances selections are combined in the category "Resonances selection".

The uncertainty quoted for " $\Delta E$ Fit" gathers the uncertainties on the shapes of signal and background PDF, and on the cross-feed $\mathcal{B}$. For the modes $D^{(*) 0} \pi^{0} / \eta(\gamma \gamma)$, with high momentum $\gamma$ in the final state, the shape difference between data and MC simulation on energy scale and resolution for neutrals is estimated from a study of the high statistics control sample $B^{-} \rightarrow$ $D^{0}\left(K^{-} \pi^{+}\right) \rho^{-}\left(\pi^{0} \pi^{-}\right)$, which yields the difference between data and MC simulation: $\left|\Delta E_{\text {mean }}\right| \simeq 5.7 \mathrm{MeV}$, for the mean and $\left|\Delta E_{\text {resolution }}\right| \simeq 3.3 \mathrm{MeV}$, for the resolution. For those modes, the uncertainty on signal shape is obtained by varying the signal PDF mean by $\pm 5.7 \mathrm{MeV}$ and the width by $\pm 3.3 \mathrm{MeV}$. For the other $\bar{B}^{0}$ signal modes, each PDF parameter is varied within the $\pm 1 \sigma$ MC simulation uncertainty, and the relative difference on fitted event yield is taken as a systematic uncertainty. The various parameters are varied one at a time. The relative differences while varying the $\Delta E$ PDF parameters

TABLE II. Number of signal events ( $N_{S}$ ), cross feed ( $N_{\text {cf }}$ ), and combinatorial background ( $N_{\text {combi }}$ ) and $B^{-} \rightarrow D^{(*) 0} \rho^{-}\left(N_{\mathrm{D} \rho}\right)$ computed from the $\Delta E$ fit to data, as well as the statistical significance in number of standard deviations (see text). The quoted uncertainties are statistical only.

|  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\bar{B}^{0} \rightarrow$ | $N_{S}$ | $N_{\text {combi }}$ | $N_{\mathrm{cf}}$ | $N_{\mathrm{D} \rho}$ | Statistical <br> significance |
| $($ decay channel $)$ |  |  |  |  |  |
|  |  |  |  |  |  |
| $D^{0} \pi^{0}$ | $1022 \pm 123$ | $2625 \pm 75$ | $97 \pm 3$ | $700 \pm 14$ | 41 |
| $D^{0} \eta(\gamma \gamma)$ | $532 \pm 14$ | $13 \pm 1$ | - | 36 |  |
| $D^{0} \eta\left(\pi \pi \pi^{0}\right)$ | $411 \pm 29$ | $191 \pm 6$ | $2 \pm 0$ | - | 23 |
| $D^{0} \omega$ | $1374 \pm 120$ | $886 \pm 25$ | $18 \pm 2$ | - | 38 |
| $D^{0} \eta^{\prime}(\pi \pi \eta(\gamma \gamma))$ | $122 \pm 13$ | $41 \pm 3$ | - | - | 14 |
| $D^{0} \eta^{\prime}\left(\rho^{0} \gamma\right)$ | $234 \pm 40$ | $1253 \pm 17$ | $1 \pm 0$ | - | 7.4 |
| $D^{* 0}\left(D^{0} \pi^{0}\right) \pi^{0}$ | $883 \pm 40$ | $268 \pm 21$ | $39 \pm 2$ | $175 \pm 5$ | 34 |
| $D^{* 0}\left(D^{0} \gamma\right) \pi^{0}$ | $622 \pm 47$ | $469 \pm 33$ | $295 \pm 23$ | $602 \pm 20$ | 17 |
| $D^{* 0}\left(D^{0} \pi^{0}\right) \eta(\gamma \gamma)$ | $338 \pm 25$ | $201 \pm 9$ | $17 \pm 1$ | - | 19 |
| $D^{* 0}\left(D^{0} \gamma\right) \eta(\gamma \gamma)$ | $187 \pm 24$ | $254 \pm 12$ | $85 \pm 11$ | - | 8.7 |
| $D^{* 0}\left(D^{0} \pi^{0}\right) \eta\left(\pi \pi \pi^{0}\right)$ | $123 \pm 15$ | $90 \pm 4$ | $5 \pm 1$ | - | 11 |
| $D^{* 0}\left(D^{0} \gamma\right) \eta\left(\pi \pi \pi^{0}\right)$ | $88 \pm 14$ | $65 \pm 4$ | $16 \pm 3$ | - | 7.6 |
| $D^{* 0}\left(D^{0} \pi^{0}\right) \omega$ | $806 \pm 48$ | $1365 \pm 18$ | $33 \pm 2$ | - | 20 |
| $D^{* 0}\left(D^{0} \gamma\right) \omega$ | $414 \pm 44$ | $1290 \pm 19$ | $132 \pm 14$ | - | 10 |
| $D^{* 0}\left(D^{0} \pi^{0}\right) \eta^{\prime}(\pi \pi \eta)$ | $45 \pm 8$ | $18 \pm 2$ | $2 \pm 0$ | - | 8.5 |
| $D^{* 0}\left(D^{0} \gamma\right) \eta^{\prime}(\pi \pi \eta)$ | $12 \pm 5$ | $8 \pm 1$ | $5 \pm 2$ | - | 3.2 |
| $D^{* 0}\left(D^{0} \pi^{0}\right) \eta^{\prime}\left(\rho^{0} \gamma\right)$ | $115 \pm 25$ | $487 \pm 11$ | $3 \pm 1$ | - | 5.4 |

TABLE III. Combined contributions to the $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}\right)$ relative systematic uncertainties (\%).

| Sources | $D^{0} \pi^{0}$ | $D^{0} \eta(\gamma \gamma)$ | $D^{0} \eta\left(\pi \pi \pi^{0}\right)$ | $\begin{aligned} & \Delta \mathcal{B} / \mathfrak{L} \\ & D^{0} \omega \end{aligned}$ | $\mathcal{B}(\%)$ for the $D^{0} \eta^{\prime}(\pi \pi \eta)$ | $\bar{B}^{0}$ decay $D^{0} \eta^{\prime}\left(\rho^{0} \gamma\right)$ | $D^{* 0} \pi^{0}$ | $D^{* 0} \eta$ | $D^{* 0} \omega$ | $D^{* 0} \eta^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\pi^{0} / \gamma$ detection | 3.5 | 3.5 | 3.6 | 3.6 | 3.7 | 2.3 | 6.2 | 5.5 | 5.7 | 5.8 |
| Tracking | 0.9 | 0.9 | 1.6 | 1.7 | 1.6 | 1.6 | 0.9 | 1.1 | 1.6 | 1.6 |
| Kaon ID | 1.0 | 1.1 | 1.1 | 1.1 | 1.2 | 1.1 | 1.1 | 1.1 | 1.1 | 1.2 |
| $K_{S}^{0}$ reconstruction | 0.7 | 0.7 | 0.6 | 0.8 | 0.6 | 0.6 | 0.4 | 0.3 | 0.5 | - |
| Secondary $\mathcal{B}$ | 1.6 | 1.6 | 2.0 | 1.8 | 2.3 | 2.4 | 5.1 | 5.7 | 5.5 | 5.1 |
| $B \bar{B}$ counting | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 |
| MC statistics | 0.1 | 0.2 | 0.3 | 0.2 | 0.4 | 0.4 | 0.2 | 0.2 | 0.3 | 0.3 |
| Resonances selection | 0.3 | 0.4 | 0.2 | 1.0 | 0.3 | 1.0 | 0.2 | 0.1 | 0.1 | 1.2 |
| $\Delta E$ fit | 2.1 | 2.2 | 1.3 | 2.1 | 1.1 | 2.1 | 1.0 | 0.6 | 1.4 | 0.5 |
| Continuum $q \bar{q}$ rejection | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| $D^{(*) 0} \rho^{-}$background | 1.8 | - | - | - | - | - | 5.6 | - | - | - |
| $D^{* 0} \omega$ polarization | - | - | - | - | - | - | - | - | 1.4 | - |
| Total | 5.1 | 4.9 | 4.9 | 5.3 | 5.1 | 4.7 | 9.6 | 8.2 | 8.5 | 8.2 |

are then summed up in quadrature. This sum is taken 1021 and smearing the PDF mean and resolution by $\pm 5.7 \mathrm{MeV}$ as a systematic uncertainty on $\Delta E$. $\quad 1022$ and $\pm 3.3 \mathrm{MeV}$ respectively. The non-parametric PDF is The uncertainty on the continuum background shape is 1023 therefore convoluted with a Gaussian with the previously estimated from the difference of the PDF fitted on generic 1024 defined mean and width values. The quadratic sum of MC simulation with that of the PDF fitted in the $m_{\mathrm{ES}}{ }^{1025}$ the various changes on the signal event yield is taken as sideband $5.24<m_{\mathrm{ES}}<5.26 \mathrm{GeV} / c^{2}$ in data. When 1026 a systematic uncertainty. a Gaussian is added to the combinatorial background ${ }_{1027}$ The relative ratio of the $B^{-} \rightarrow D^{* 0} \rho^{-}$and $B^{-} \rightarrow$ shape, to model additional peaking $B \bar{B}$ background con- ${ }_{1028} D^{0} \rho^{-}$backgrounds for the studies of the modes $\bar{B}^{0} \rightarrow$ tributions (see Sec. IIID 3), the related uncertainty is ${ }_{1029} D^{(*) 0} \pi^{0}$ has been fixed to the data for rejected $B^{-}$events computed by varying its means and resolution by $\pm 1 \sigma$. 1030 with the veto described in Sec. III C 3. The effect of such
We account for possible differences in the PDF shape 1031 a veto on that ratio is then computed from MC simulaof the $B^{-} \rightarrow D^{(*) 0} \rho^{-}$background that is modeled by a ${ }_{1032}$ tion. We assign as a conservative systematic uncertainty non-parametric PDF. As above it is obtained by shifting ${ }_{1033}$ half of the difference between the nominal result and

TABLE IV. Branching fractions of channels $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$ measured in the different secondary decay modes. The first uncertainty is statistical and the second is systematic. The cells with "-" correspond to channels that have been discarded after the analysis on simulation, and confirmed with data, as no significant signal is expected or seen for them.

|  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| $\mathcal{B}\left(\bar{B}^{0} \rightarrow\right)\left(\times 10^{-4}\right)$ | $D^{0} \rightarrow K \pi$ | $D^{0} \rightarrow K 3 \pi$ | $D^{0} \rightarrow K \pi \pi^{0}$ | $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$ |
| $D^{0} \pi^{0}$ | $2.49 \pm 0.13 \pm 0.16$ | $2.69 \pm 0.15 \pm 0.17$ | $2.97 \pm 0.15 \pm 0.25$ | $2.90 \pm 0.28 \pm 0.23$ |
| $D^{0} \eta(\gamma \gamma)$ | $2.46 \pm 0.18 \pm 0.14$ | $2.56 \pm 0.19 \pm 0.16$ | $2.37 \pm 0.20 \pm 0.20$ | $2.62 \pm 0.37 \pm 0.21$ |
| $D^{0} \eta\left(\pi \pi \pi^{0}\right)$ | $2.59 \pm 0.27 \pm 0.12$ | $2.65 \pm 0.30 \pm 0.14$ | $2.48 \pm 0.29 \pm 0.20$ | $2.28 \pm 0.54 \pm 0.18$ |
| $D^{0} \omega$ | $2.59 \pm 0.18 \pm 0.20$ | $2.34 \pm 0.19 \pm 0.15$ | $2.42 \pm 0.20 \pm 0.21$ | $3.17 \pm 0.39 \pm 0.24$ |
| $D^{0} \eta^{\prime}(\pi \pi \eta(\gamma \gamma))$ | $1.40 \pm 0.25 \pm 0.07$ | $1.37 \pm 0.26 \pm 0.08$ | $1.34 \pm 0.27 \pm 0.11$ | $1.30 \pm 0.50 \pm 0.12$ |
| $D^{0} \eta^{\prime}\left(\rho^{0} \gamma\right)$ | $1.58 \pm 0.42 \pm 0.09$ | $1.79 \pm 0.57 \pm 0.10$ | $1.91 \pm 0.54 \pm 0.15$ | $1.55 \pm 0.89 \pm 0.16$ |
| $D^{* 0}\left(D^{0} \pi^{0}\right) \pi^{0}$ | $2.95 \pm 0.25 \pm 0.30$ | $2.95 \pm 0.29 \pm 0.33$ | $3.52 \pm 0.29 \pm 0.43$ | $2.32 \pm 0.56 \pm 0.24$ |
| $D^{* 0}\left(D^{0} \gamma\right) \pi^{0}$ | $3.49 \pm 0.40 \pm 0.83$ | $2.25 \pm 0.50 \pm 0.63$ | $3.02 \pm 0.50 \pm 0.90$ | $3.53 \pm 1.14 \pm 0.99$ |
| $D^{* 0}\left(D^{0} \pi^{0}\right) \eta(\gamma \gamma)$ | $2.52 \pm 0.32 \pm 0.26$ | $2.57 \pm 0.33 \pm 0.29$ | $2.41 \pm 0.32 \pm 0.32$ | $4.09 \pm 0.74 \pm 0.49$ |
| $D^{* 0}\left(D^{0} \gamma\right) \eta(\gamma \gamma)$ | $2.62 \pm 0.45 \pm 0.33$ | $2.81 \pm 0.49 \pm 0.35$ | $2.87 \pm 0.55 \pm 0.39$ | $2.75 \pm 0.78 \pm 0.36$ |
| $D^{* 0}\left(D^{0} \pi^{0}\right) \eta\left(\pi \pi \pi^{0}\right)$ | $2.27 \pm 0.50 \pm 0.20$ | $2.60 \pm 0.55 \pm 0.24$ | $1.93 \pm 0.46 \pm 0.22$ | $1.21 \pm 0.87 \pm 0.13$ |
| $D^{* 0}\left(D^{0} \gamma\right) \eta\left(\pi \pi \pi^{0}\right)$ | $2.93 \pm 0.71 \pm 0.32$ | $2.55 \pm 0.80 \pm 0.29$ | $1.94 \pm 0.81 \pm 0.24$ | - |
| $D^{* 0}\left(D^{0} \pi^{0}\right) \omega$ | $5.07 \pm 0.45 \pm 0.47$ | $4.00 \pm 0.49 \pm 0.36$ | $4.38 \pm 0.51 \pm 0.51$ | $5.02 \pm 0.98 \pm 0.53$ |
| $D^{* 0}\left(D^{0} \gamma\right) \omega$ | $3.66 \pm 0.64 \pm 0.41$ | $4.46 \pm 0.80 \pm 0.56$ | $4.59 \pm 0.87 \pm 0.57$ | $4.28 \pm 1.71 \pm 0.57$ |
| $D^{* 0}\left(D^{0} \pi^{0}\right) \eta^{\prime}(\pi \pi \eta(\gamma \gamma))$ | $1.09 \pm 0.38 \pm 0.09$ | $1.67 \pm 0.44 \pm 0.15$ | $1.34 \pm 0.49 \pm 0.15$ | - |
| $D^{* 0}\left(D^{0} \gamma\right) \eta^{\prime}(\pi \pi \eta(\gamma \gamma))$ | $0.75 \pm 0.49 \pm 0.24$ | - | $1.19 \pm 0.69 \pm 0.39$ | - |
| $D^{* 0}\left(D^{0} \pi^{0}\right) \eta^{\prime}\left(\rho^{0} \gamma\right)$ | $2.10 \pm 0.82 \pm 0.23$ | $1.21 \pm 0.90 \pm 0.14$ | $1.45 \pm 0.95 \pm 0.18$ | - |
| $D^{* 0}\left(D^{0} \gamma\right) \eta^{\prime}\left(\rho^{0} \gamma\right)$ | - | - | - | - |

the result from the MC simulation assuming the PDG 1064 Unbiased Estimate ( $B L U E$ ) technique [34], that accounts
branching ratios of $\left.B^{-} \rightarrow D^{(*) 0} \rho^{-}[25]\right)$.
to the result obtained when computing the expected 1 signal yield in the case where the above relative PDF 10 normalization ratio of the $B^{-} \rightarrow D^{(*) 0} \rho^{-}$backgrounds is fully computed from the MC simulation (i.e. when assuming the PDG branching fractions [25]).

The acceptance of $\bar{B}^{0} \rightarrow D^{* 0} \omega$ is estimated from the sum of purely longitudinally $\left(f_{L}=0\right)$ and transversally $\left(f_{L}=1\right)$ polarized MC simulation signals, weighted by our measurement of $f_{L}$ (see Sec. VI). The systematic uncertainty in the fraction of $D^{* 0} \omega$ longitudinal polarization is then estimated by varying $f_{L}$ by $\pm 1 \sigma$ in the estimation of the signal acceptance. This contribution is small and slightly more than $1 \%$, while it would be estimated to be about $10.5 \%$ if the fraction $f_{L}$ was unknown. This is one of the motivations for measuring the polarization of the channel $\bar{B}^{0} \rightarrow D^{* 0} \omega$ (see Sec. VI).

The most significant sources of systematic uncertain- 1 for the correlation between the various modes. In the $B L U E$ method the average value is a linear combination of the individual measurements:

$$
\begin{equation*}
\mathcal{B}=\sum_{i}\left(\alpha_{i} \times \mathcal{B}_{i}\right), \tag{13}
\end{equation*}
$$

${ }^{1068}$ where each coefficient $\alpha_{i}$ is a constant weight, not nec1069 essarily positive, for a given measurement $\mathcal{B}_{i}$. The condition $\sum_{i} \alpha_{i}=1$ ensures that the method is unbiased. The set of coefficients $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ (a vector with $t$ elements) is calculated so that the variance of $\mathcal{B}$ is minimal

$$
\begin{equation*}
\alpha=\frac{E^{-1} U}{U^{T} E^{-1} U}, \tag{14}
\end{equation*}
$$

1074 where $U$ is a $t$-component vector with elements all equal 5 to 1: $U=(1,1, \ldots), U^{T}$ its transpose, and $E$ is the $(t \times t)$ 6 error matrix. The variance of $\mathcal{B}$ is then given by: ties come from the $\pi^{0} / \gamma$ reconstruction, from the $\Delta E$
fits, and from the uncertainties on the known world average branching fractions of the secondary channels. In the case of the modes $\bar{B}^{0} \rightarrow D^{(*) 0} \pi^{0}$, the contributions from $B^{-} \rightarrow D^{(*) 0} \rho^{-}$backgrounds are also not negligible.

## V. RESULTS FOR THE $\mathcal{B}$ MEASUREMENTS

$$
\begin{equation*}
E_{i j}=\rho_{i j} \sigma_{i} \sigma_{j} \tag{16}
\end{equation*}
$$

The $\mathcal{B}$ measured in the different secondary decay chan- 1080 where $\sigma_{i}$ and $\sigma_{j}$ are the uncertainties from the correnels reconstructed in this analysis are given in Table IV ${ }_{1081}$ sponding systematics for the modes $i$ and $j$, and $\rho_{i j}$ is (for missing entries in the Table; see the discussion on 1082 their correlation coefficient. We distinguish several types discarded sub-modes in Sec. III D 6).

1083 of systematics according to their correlations between the
These $\mathcal{B}$ are combined using the so-called Best Linear ${ }_{1084}$ modes:

TABLE V. Branching fractions of channels $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$, where the $\mathcal{B}$ measured in each $D^{0}$ modes are combined. For the modes with $h^{0}=\eta, \eta^{\prime}$, we give the combination (comb.) of the $\mathcal{B}$ computed with each sub-modes of $\eta^{\left({ }^{( }\right)}$. The first uncertainty is statistical and the second is systematics. The quality of the combination is given through the value of $\chi^{2} / n d o f$, with the corresponding probability (p-value) given in parenthesis in percents.

| $\bar{B}^{0}$ mode | $\mathcal{B}\left(\times 10^{-4}\right)$ | $\chi^{2} / n d o f$ <br> $(\mathrm{p}-$ value $\%)$ |
| :--- | :---: | :---: |
| $D^{0} \pi^{0}$ | $2.69 \pm 0.09 \pm 0.13$ | $2.81 / 3(42.2)$ |
| $D^{0} \eta(\gamma \gamma)$ | $2.50 \pm 0.11 \pm 0.12$ | $0.45 / 3(93.0)$ |
| $D^{0} \eta\left(\pi \pi \pi^{0}\right)$ | $2.56 \pm 0.16 \pm 0.13$ | $0.39 / 3(94.2)$ |
| $D^{0} \eta($ comb. $)$ | $2.53 \pm 0.09 \pm 0.11$ | $0.95 / 7(99.6)$ |
| $D^{0} \omega$ | $2.57 \pm 0.11 \pm 0.14$ | $3.19 / 3(36.3)$ |
| $D^{0} \eta^{\prime}(\pi \pi \eta(\gamma \gamma))$ | $1.37 \pm 0.14 \pm 0.07$ | $0.05 / 3(99.7)$ |
| $D^{0} \eta^{\prime}\left(\rho^{0} \gamma\right)$ | $1.73 \pm 0.28 \pm 0.08$ | $0.27 / 3(96.6)$ |
| $D^{0} \eta^{\prime}($ comb. $)$ | $1.48 \pm 0.13 \pm 0.07$ | $1.55 / 7(98.1)$ |
| $D^{* 0} \pi^{0}$ | $3.05 \pm 0.14 \pm 0.28$ | $4.73 / 7(69.3)$ |
| $D^{* 0} \eta(\gamma \gamma)$ | $2.77 \pm 0.16 \pm 0.25$ | $4.20 / 7(75.6)$ |
| $D^{* 0} \eta\left(\pi \pi \pi^{0}\right)$ | $2.40 \pm 0.25 \pm 0.21$ | $3.81 / 6(70.2)$ |
| $D^{* 0} \eta($ comb. $)$ | $2.69 \pm 0.14 \pm 0.23$ | $10.48 / 14(72.6)$ |
| $D^{* 0} \omega$ | $4.55 \pm 0.24 \pm 0.39$ | $4.05 / 7(77.4)$ |
| $D^{* 0} \eta^{\prime}(\pi \pi \eta(\gamma \gamma))$ | $1.37 \pm 0.23 \pm 0.13$ | $2.30 / 4(68.1)$ |
| $D^{* 0}\left(D^{0} \pi^{0}\right) \eta^{\prime}\left(\rho^{0} \gamma\right)$ | $1.81 \pm 0.42 \pm 0.16$ | $0.68 / 2(71.2)$ |
| $D^{* 0} \eta^{\prime}($ comb. $)$ | $1.48 \pm 0.22 \pm 0.13$ | $3.78 / 7(80.5)$ |

- full correlation, $\left|\rho_{i j}\right| \sim 1$ : neutrals (but uncertain- ${ }^{1138}$ ties for $\pi^{0}$ and single $\gamma$ are independent), PID, tracking, number of $B \bar{B}, \mathcal{B}\left(D^{* 0}\right), D^{* 0} \omega$ polariza- ${ }^{11}$ tion in that mode,
- medium correlation: $\mathcal{B}\left(D^{0}\right), \mathcal{B}\left(h^{0}\right)$, whose correlations are taken from the PDG [25] and range from $2 \%$ to $100 \%, D^{(*) 0} \rho^{-}$background in $\bar{B}^{0} \rightarrow D^{(*) 0} \pi^{0}$, ate resonances, MC statistics. matrix for each source of uncertainty. The systematic 1147 (statistical) uncertainty on the combined value of $\mathcal{B}$ is ${ }_{1148}$ computed by using Eq. (15) where the error matrix in- 1149 signs of new phy cludes only the systematic (statistical) uncertainties. ${ }_{1150}$
branching fractions together with the combined value are displayed in Figs. 5 and 6 and they are compared to the previous measurements by CLEO [8], BABAR [10, 14], and Belle [11, 12].

The results of this blind analysis, based on a data sample of $454 \times 10^{6} B \bar{B}$ pairs, are fully compatible with our previous measurements [10, 14], and also with those of CLEO [8]. They are compatible with the measurements by Belle $[11,12]$ for most of the modes, except for $\bar{B}^{0} \rightarrow D^{(*) 0} \eta, D^{* 0} \omega$, and $D^{* 0} \pi^{0}$, where our results are larger.

As a cross check we also perform the $\mathcal{B}$ measurements with a sub-data set of only $88 \times 10^{6} B \bar{B}$ pairs that we previously studied [10]. We found fully compatible $\mathcal{B}$ values with both statistical and systematic uncertainties lowered by significant amounts. In addition to a 5.1 times larger data set, with respect to 2004 , we benefit from improved procedures to reconstruct and analyze the data collected by the BABAR detector . This updated analysis incorporates new decay modes, higher signal efficiency, better background rejection and treatment. It employs better fitting techniques and uses more sophisticated methods to combine the results obtained with the various sub-decay modes. We use additional control data samples and measure directly in the data the relative ratio of the $B^{-} \rightarrow D^{(*) 0} \rho^{-}$backgrounds.

These measurements are the most precise determinations of the $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}\right)$ from a single experiment. They represent significant improvements with respect to the accuracy of the existing PDG averages [25].

## VI. POLARIZATION OF $\bar{B}^{0} \rightarrow D^{* 0} \omega$

The polarization of the vector-vector ( $V V$ ) decay $\bar{B}^{0} \rightarrow D^{* 0} \omega$ has never been measured. Until now, it was admitted to be similar to that of the decay $B^{-} \rightarrow D^{* 0} \rho^{-}$, based on Heavy Quark Effective Theory (HQET) and factorization arguments [35]. The angular distributions for the decay $\bar{B}^{0} \rightarrow D^{* 0} \omega$ is described by three helicity amplitudes: the longitudinal $H_{0}$ amplitude and the transverse $H_{+}$and $H_{-}$amplitudes. In the factorization description of $B \rightarrow V V$ decays, the longitudinal amplitude $H_{0}$ is expected to be dominant, leading to the fraction of longitudinal polarization, defined as:

$$
\begin{equation*}
f_{L} \equiv \frac{\Gamma_{L}}{\Gamma}=\frac{\left|H_{0}\right|^{2}}{\left|H_{0}\right|^{2}+\left|H_{+}\right|^{2}+\left|H_{-}\right|^{2}}, \tag{17}
\end{equation*}
$$

The total error matrix $E$ is then the sum of the error ${ }_{1146}$ and predicted to be close to one [3, 36-38]. of degrees of freedom of the combination ( $n d o f$ ), and ${ }_{1153}$ enhanced electromagnetic penguin decays [41], leading to the corresponding probability ( p -value). The individual ${ }_{1154}$ significative deviation of $f_{L}$ from one. It has also been


FIG. 5. $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{0} h^{0}\right)\left(\times 10^{-4}\right)$ for the individual reconstructed $D^{0}$ and $h^{0}$ channels (blue points) together with the $B L U E$ combination (vertical yellow bands and the red points). The previous experimental results from $B A B A R[10,14]$, Belle [11, 12], and CLEO [8] are also shown (black points). The uncertainty horizontal bars represent the statistical contribution alone and the quadratic sum of the statistical and systematic contributions. The width of the vertical yellow band corresponds to $\pm 1 \sigma$ of the combined measurement, where the statistical and systematic uncertainties are summed in quadrature.


FIG. 6. $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{* 0} h^{0}\right)\left(\times 10^{-4}\right)$ for the individual reconstructed $D^{0}, D^{* 0}$, and $h^{0}$ channels together with the BLUE combination (vertical yellow bands and the red points). The blue squares (triangles) are for measurements with the sub-decay $D^{* 0} \rightarrow D^{0} \pi^{0}\left(D^{0} \gamma\right)$. The previous experimental results from BABAR [10, 14], Belle [11, 12], and CLEO [8] are also shown (black points). The uncertainty horizontal bars represent the statistical contribution alone and the quadratic sum of the statistical and systematic contributions. The width of the vertical yellow band corresponds to $\pm 1 \sigma$ of the combined measurement, where the statistical and systematic uncertainties are summed in quadrature.
argued in SCET studies that non-trivial long distance ${ }_{167}$ is performed with $\bar{B}^{0} \rightarrow D^{* 0} \omega$ candidates selected with contributions to the $\bar{B}^{0} \rightarrow D^{* 0} \omega$ amplitude may allow ${ }_{1168}$ the same requirements as for the $\mathcal{B}$ analysis described a significant amount of transverse polarization of similar 1169 in the previous sections. We consider the sub-decays size to the longitudinal polarization, leading to a value $1170 D^{* 0} \rightarrow D^{0} \pi^{0}$ and $D^{0} \rightarrow K^{-} \pi^{+}, K^{-} \pi^{+} \pi^{0}, K^{-} \pi^{+} \pi^{-} \pi^{+}$, $f_{L} \sim 0.5$.
Apart from the motivation of these phenomenological questions, the uncertainty on the angular polarization of $\bar{B}^{0} \rightarrow D^{* 0} \omega\left(f_{L} \sim 0.5-1\right)$ affects the kinematic acceptance of this channel and therefore would be the ${ }^{172}$ dominant contribution to the systematic effects for its $\mathcal{B}$ measurement. Hence we measure the fraction of longi- ${ }_{173}$ The differential decay rate of $\bar{B}^{0} \rightarrow D^{* 0} \omega$ for the subtudinal polarization for this decay mode. The analysis 1174 decay $D^{* 0} \rightarrow D^{0} \pi^{0}$ is [42]

$$
\begin{align*}
\frac{d^{3} \Gamma}{d \cos \left(\theta_{D^{*}}\right) d \cos \left(\theta_{\omega}\right) d \chi} \propto & 4\left|H_{0}\right|^{2} \cos ^{2}\left(\theta_{D^{*}}\right) \cos ^{2}\left(\theta_{\omega}\right)+ \\
& {\left[\left|H_{+}\right|^{2}+\left|H_{-}\right|^{2}+2\left(\operatorname{Re}\left(H_{+} H_{-}^{*}\right) \cos (\chi)-\operatorname{Im}\left(H_{+} H_{-}^{*}\right) \sin (2 \chi)\right)\right] \sin ^{2}\left(\theta_{D^{*}}\right) \sin ^{2}\left(\theta_{\omega}\right)+}  \tag{18}\\
& \left(\operatorname{Re}\left(H_{+} H_{0}^{*}+H_{-} H_{0}^{*}\right) \cos (\chi)-\operatorname{Im}\left(H_{+} H_{0}^{*}-H_{-} H_{0}^{*}\right) \sin (\chi)\right) \sin \left(2 \theta_{D^{*}}\right) \sin \left(2 \theta_{\omega}\right),
\end{align*}
$$

$$
\frac{d^{3} \Gamma}{d \cos \left(\theta_{D^{*}}\right) d \cos \left(\theta_{\omega}\right)} \propto 4\left|H_{0}\right|^{2} \cos ^{2}\left(\theta_{D^{*}}\right) \cos ^{2}\left(\theta_{\omega}\right)+
$$

$$
\begin{equation*}
\left(\left|H_{+}\right|^{2}+\left|H_{-}\right|^{2}\right) \sin ^{2}\left(\theta_{D^{*}}\right) \sin ^{2}\left(\theta_{\omega}\right) \tag{19}
\end{equation*}
$$

This differential decay width is proportional to

$$
\begin{equation*}
4 f_{L} \cos ^{2}\left(\theta_{D^{*}}\right) \cos ^{2}\left(\theta_{\omega}\right)+\left(1-f_{L}\right) \sin ^{2}\left(\theta_{D^{*}}\right) \sin ^{2}\left(\theta_{\omega}\right), \tag{20}
\end{equation*}
$$ which is the weighted sum of purely longitudinal $\left(f_{L}=1\right)$ and purely transverse $\left(f_{L}=0\right)$ contributions

We employ high statistics MC simulations of exclusive signal samples of $\bar{B}^{0} \rightarrow D^{* 0} \omega$ decays with the two ex${ }_{187}$ treme configurations $f_{L}=0$ and 1 to estimate the ratio ${ }^{122}$ of signal acceptance, $\varepsilon_{0} / \varepsilon_{1}$, of $f_{L}=0$ events to $f_{L}=1{ }^{1221}$ events. The longitudinal fraction $f_{L}$, can be expressed in terms of the fraction of background events, $\gamma$, and the fraction of $f_{L}=1$ events in the observed data sample, $\alpha$ :

$$
\begin{equation*}
f_{L}=\frac{\alpha}{\alpha+(1-\alpha-\gamma) \cdot \frac{\varepsilon_{0}}{\varepsilon_{1}}} . \tag{21}
\end{equation*}
$$

The fraction $\gamma$ is taken from the fit of $\Delta E$ for a sig- ${ }^{1225}$ ${ }_{1193}$ nal region $|\Delta E|<2.5 \sigma_{\Delta E}$ and $m_{\mathrm{ES}}>5.27 \mathrm{GeV} / c^{2},{ }^{1226}$ 194 where $\sigma_{\Delta E}$ is the fitted $\Delta E$ width of the signal distri- ${ }^{1227}$ 195 bution, ranging from 20.8 to 23.3 MeV depending on the ${ }^{1228}$ 196 mode. The fraction $\alpha$ is determined from a simultane- ${ }_{1229}$ 197 ous 2-dimensional fit to the distributions of the helicity ${ }_{1230}$ 1198 angles $\cos \left(\theta_{\omega}\right)$ and $\cos \left(\theta_{D^{*}}\right)$, for $\bar{B}^{0} \rightarrow D^{* 0} \omega$ candidates ${ }_{1231}$ 1199 selected in the same signal region. The correlation be- ${ }_{1232}$ ${ }_{1200}$ tween $\cos \left(\theta_{\omega}\right)$ and $\cos \left(\theta_{D^{*}}\right)$ is found to be negligible

The signal shapes are described with parabolas (see Eq. 20), except for the $\cos \left(\theta_{\omega}\right)$ distribution of $f_{L}=0$ signal events, which is described by an MC simulation-based non-parametric PDF. It is for the following reason: the signal distribution of $\cos \left(\theta_{\omega}\right)$ is distorted around zero because of the selection cut on pion momentum and on the $\omega$ boost (see Sec. III B 3). The signal PDF parameters are fixed to those fitted on the $D^{* 0} \omega$ simulations. The shape of the $\cos \left(\theta_{\omega}\right)$ and $\cos \left(\theta_{D^{*}}\right)$ background distributions is taken from the data sideband $-280<\Delta E<280 \mathrm{MeV}$ and $5.235<m_{\mathrm{ES}}<5.27 \mathrm{GeV} / c^{2}$. The consistency of the background shape was checked and validated for various regions of the sidebands in data and generic MC simulations. Possible biases on $f_{L}$ from the fit are investigated with pseudo-experiment studies for various values of $f_{L}$. No significant biases are observed. An additional study is performed with embedded signal MC simulation, i.e. with signal events modeled from various different fully simulated signal samples. A small bias accounting for the description of the signal shape is observed and is corrected later on.

## B. Statistical and systematic uncertainties

The statistical uncertainty on $f_{L}$ is estimated with a conservative approach by varying independently the two fitted parameters $\alpha$ and $\gamma$ by varying their values by $\pm 1 \sigma$ in Eq. (21). An extended study based on MC pseudoexperiments accounting correlations between $\alpha$ and $\gamma$ gave slightly smaller uncertainty.

The uncertainty on the signal shape in the simultaneous 2 -dimensional fit to $\cos \left(\theta_{\omega}\right)$ and $\cos \left(\theta_{D^{*}}\right)$ is measured using the control sample $B^{+} \rightarrow D^{* 0} \pi^{+}$, with $D^{* 0} \rightarrow D^{0} \pi^{0}$ and $D^{0} \rightarrow K^{-} \pi^{+}$. This mode was cho${ }_{233}$ sen for its high purity and for its longitudinal fraction


FIG. 7. Fitted distributions of the helicity $\cos \left(\theta_{D^{*}}\right)(\mathrm{a})$ and $\cos \left(\theta_{\omega}\right)(\mathrm{b})$ in the channel $\bar{B}^{0} \rightarrow D^{* 0} \omega$ for the $D^{0}$ decay modes $K^{-} \pi^{+}$(Fig. 1), $K^{-} \pi^{+} \pi^{-} \pi^{+}$(Fig. 2), $K^{-} \pi^{+} \pi^{0}$ (Fig. 3) and $K_{S}^{0} \pi^{+} \pi^{-}$(Fig. 4). The dots with error bars are data, the solid blue curve is the fitted total PDF, the dash-dot grey curve is the background contribution, the blue curve with long dash is the signal part with $f_{L}=1$ and signal with $f_{L}=0$ is the red curve with dots.
$f_{L}=1$, which enables us to directly compare its shape 1256 the procedure described above. The small bias observed to our signal $f_{L}=1$. The distribution of the helicity an- ${ }^{1257}$ is assigned as a systematic uncertainty. gle of the $D^{* 0}$ is found to be wider in the data than in the MC , this difference being parameterized by a parabola. The uncertainty on the signal shape is then measured by ${ }_{12}$ refitting $\alpha$, with the signal PDF being multiplied by the correction parabola. The relative difference is then taken as the uncertainty.

The uncertainty on the efficiency ratio $\varepsilon_{0} / \varepsilon_{1}$, from the limited amount of MC statistics available, is calculated assuming $\varepsilon_{0}$ and $\varepsilon_{1}$ to be uncorrelated, while the uncer1 tainties on $\varepsilon_{0} / \varepsilon_{1}$ are calculated from the binomial distri2 bution.

The uncertainty on the background shape is measured by refitting $\alpha$ with the background shape fitted ${ }_{1263}$ in a lower data sideband $-280<\Delta E<280 \mathrm{MeV}$ and $5.20<m_{\text {ES }}<5.235 \mathrm{GeV} / \mathrm{c}^{2}$ The relative difference is then taken as the uncertainty. 1265 1266 uncertainty is statistical. Among the various systematics An uncertainty is assigned to the assumption of the ${ }^{1267}$ sources, the largest contribution comes from the signal acceptance being independent of $\chi$. The acceptance of 1268 parametrization. the MC signal is measured in bins of $\chi$ and fitted with a
Fourier series to account for any deviation from flatness. 1269 As a check, the $f_{L}$ measurement is applied in data The fitted function is then used as a parametrization of ${ }_{1270}$ first on the high purity and high statistics control sample the acceptance dependency to $\chi$ in a study with pseudo- $1271 B^{-} \rightarrow D^{* 0} \pi^{-}$, with $D^{* 0} \rightarrow D^{0} \pi^{0}$ and $D^{0} \rightarrow K^{-} \pi^{+}$. MC experiments and multiplied to the decay rate (see ${ }_{1272}$ This channel is longitudinally polarized, i.e. $f_{L}=1$. The Eq. 18). Events are generated from this new decay rate 1273 fit of $\cos \left(\theta_{D^{*}}\right)$ in data yields a value of $f_{L}$ compatible with and their $\cos \left(\theta_{\omega}\right) \times \cos \left(\theta_{D^{*}}\right)$ distributions are fitted with ${ }_{1274}$ one, reinforcing the validity of the analysis procedure.

TABLE VI. Total relative uncertainties computed in data on the measurement of $f_{L}$ in the channel $\bar{B}^{0} \rightarrow D^{* 0} \omega$, with $D^{* 0} \rightarrow D^{0} \pi^{0}$ and $D^{0} \rightarrow K^{-} \pi^{+}, K^{-} \pi^{+} \pi^{0}, K^{-} \pi^{+} \pi^{-} \pi^{+}$, and $K_{S}^{0} \pi^{+} \pi^{-}$.

|  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Sources | $\Delta f_{L} / f_{L}(\%)$ |  |  |  |
|  | $K \pi$ | $K 3 \pi$ | $K \pi \pi^{0}$ | $K_{S}^{0} \pi \pi$ |
| Signal PDFs | 2.5 | 2.9 | 2.4 | 2.3 |
| Bias | 1.0 | 1.3 | 2.0 | 2.3 |
| Background PDF | 0.3 | 4.2 | 3.6 | 4.0 |
| Limited MC statistics | 0.1 | 0.2 | 0.3 | 0.3 |
| Flat acceptance vs. $\chi$ | 1.5 | 1.8 | 0.5 | 6.9 |
| Total syst. | 3.1 | 5.6 | 4.8 | 8.6 |
| Statistical uncert. | 9.6 | 16.3 | 16.3 | 25.6 |
| Total uncert. | 10.0 | 17.2 | 17.0 | 27.0 |

## C. Results for the fraction of longitudinal polarization $f_{L}$

The fitted data distributions of the cosine of the helic- ${ }^{1220}$ ity angles are given in Fig. 7. The measurements for each ${ }^{1294}$ $D^{0}$ channel are then combined with the $B L U E$ statistical ${ }^{1295}$ method [34] (see Sec. V) with $\chi^{2} / n d o f=1.01 / 3$ (i.e.: a ${ }^{1296}$ probability of $79.9 \%$ ), where ndof is number of degrees of freedom. The measured values of $f_{L}, \alpha, \gamma$ and $\varepsilon_{00} / \varepsilon_{11}$ are given with the details of the combination in Table VII ${ }^{1297}$ and in Fig. 8. The final result is $f_{L}=(66.5 \pm 4.7 \pm 1.5) \%$, where the first uncertainty is statistical and the second ${ }_{1298}$ systematics. This is the first measurement of the longitudinal fraction of $\bar{B}^{0} \rightarrow D^{* 0} \omega$, with a relative precision ${ }_{1299}$ of $7.4 \%$.

TABLE VII. Values of $\alpha$ fitted in data, of the background fraction $\gamma$ and of the acceptance ratio $\varepsilon_{0} / \varepsilon_{1}$, with the corresponding values of the longitudinal fraction $f_{L}$ after the bias correction. The first quoted uncertainty is statistical and the second systematic.

|  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| $D^{0}$ mode | $\alpha(\%)$ | $\gamma(\%)$ | $\varepsilon_{0} / \varepsilon_{1}$ | $f_{L}(\%)$ |
| $K \pi$ | $33.4 \pm 2.7$ | $52.0 \pm 1.9$ | $1.093 \pm 0.012$ | $64.8 \pm 6.5 \pm 2.1$ |
| $K 3 \pi$ | $18.8 \pm 2.3$ | $71.2 \pm 2.5$ | $1.068 \pm 0.017$ | $60.8 \pm 10.3 \pm 3.6$ |
| $K \pi \pi^{0}$ | $19.6 \pm 2.1$ | $76.0 \pm 2.3$ | $1.109 \pm 0.021$ | $76.9 \pm 13.0 \pm 3.8$ |
| $K_{S}^{0} \pi \pi$ | $24.9 \pm 4.2$ | $66.0 \pm 4.9$ | $1.092 \pm 0.016$ | $66.7 \pm 18.3 \pm 6.2$ |
| Combi. |  | $f_{L}=(66.5 \pm 4.7 \pm 1.5) \%$ |  |  |



FIG. 8. Measurements of $f_{L}$ with the four $D^{0}$ modes in data. The yellow band represents the BLUE combination.
${ }^{1292}$ arise from the same mechanism as the one responsible for the transverse polarization observed in $B \rightarrow \phi K^{*}$. It however supports the existence of effects from non trivial long distance contributions to the decay amplitude of $\bar{B}^{0} \rightarrow D^{* 0} \omega$ as predicted by SCET studies [21].

## VII. DISCUSSION

## A. Isospin analysis

The isospin symmetry relates the amplitudes of the decays $B^{-} \rightarrow D^{(*) 0} \pi^{-}, \bar{B}^{0} \rightarrow D^{(*)+} \pi^{-}$and $\bar{B}^{0} \rightarrow D^{(*) 0} \pi^{0}$, which can be written as linear combinations of the isospin eigenstates $\mathcal{A}_{I, D^{(*)}}, I=1 / 2,3 / 2[5,44]$ :

$$
\begin{align*}
& \mathcal{A}\left(D^{(*) 0} \pi^{-}\right)=\sqrt{3} \mathcal{A}_{3 / 2, D^{(*)}}  \tag{22}\\
& \mathcal{A}\left(D^{(*)+} \pi^{-}\right)=1 / \sqrt{3} \mathcal{A}_{3 / 2, D^{(*)}}+\sqrt{2 / 3} \mathcal{A}_{1 / 2, D^{(*)}} \\
& \mathcal{A}\left(D^{(*) 0} \pi^{0}\right)=\sqrt{2 / 3} \mathcal{A}_{3 / 2, D^{(*)}}-\sqrt{1 / 3} \mathcal{A}_{1 / 2, D^{(*)}},
\end{align*}
$$

3 leading to:

$$
\begin{equation*}
\mathcal{A}\left(D^{(*) 0} \pi^{-}\right)=\mathcal{A}\left(D^{(*)+} \pi^{-}\right)+\sqrt{2} \mathcal{A}\left(D^{(*) 0} \pi^{0}\right) \tag{23}
\end{equation*}
$$

1304 The relative strong phase between the eigenstates ${ }_{1305} \mathcal{A}_{1 / 2, D^{(*)}}$ and $\mathcal{A}_{3 / 2, D^{(*)}}$ is denoted as $\delta$ for the $D \pi$ system ${ }_{306}$ and $\delta^{*}$ for $D^{*} \pi$ system. Final state interactions between ${ }_{307}$ the states $D^{(*) 0} \pi^{0}$ and $D^{(*)+} \pi^{-}$may lead to a value of $\delta^{(*)}$ different from zero and, through constructive interference, to a larger value of $\mathcal{B}$ for $D^{(*) 0} \pi^{0}$ than prediction obtained within the factorization approximation. One can also define the amplitude ratio $R^{(*)}$ :

$$
\begin{equation*}
R^{(*)}=\frac{\left|\mathcal{A}_{1 / 2, D^{(*)}}\right|}{\sqrt{2}\left|\mathcal{A}_{3 / 2, D^{(*)}}\right|} \tag{24}
\end{equation*}
$$

for $D^{*} \pi$ final states.
In both $D \pi$ and $D^{*} \pi$ cases, the amplitude ratio is significantly different from the factorization prediction $R^{(*)}=1$. The strong phases are also significantly dif2 ferent from zero and are equal in the two systems $D \pi$ 3 and $D^{*} \pi\left(0^{\circ}\right.$ is respectively excluded at $99.998 \%$ and $99.750 \%$ of confidence level), which points out that nonfactorizable FSI are indeed not negligible. Those results confirm the SCET predictions.

## B. Comparison to theoretical predictions on

$$
\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}\right)
$$

Table VIII compares the $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}\right)$ mea-


FIG. 9. Combined ratios $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{* 0} h^{0}\right) / \mathcal{B}\left(\bar{B}^{0} \rightarrow D^{0} h^{0}\right)$ measured in this paper compared to theoretical prediction by SCET [21] (vertical solid line). The vertical band represent the estimated theoretical uncertainty from SCET.


FIG. 10. Combined ratios $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{* 0} \eta^{\prime}\right) / \mathcal{B}\left(\bar{B}^{0} \rightarrow D^{* 0} \eta\right)$ and $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{0} \eta^{\prime}\right) / \mathcal{B}\left(\bar{B}^{0} \rightarrow D^{0} \eta\right)$ measured in this paper compared to theoretical prediction by SCET [21] (vertical line) and from factorization [48] (vertical bands).

Factorization predicts the ratio $\mathcal{B}\left(\bar{B}^{0} \rightarrow\right.$ $\left.D^{(*) 0} \eta^{\prime}\right) / \mathcal{B}\left(\bar{B}^{0} \rightarrow D^{(*) 0} \eta\right)$ to have a value between 0.64 and 0.68 [48], related to the $\eta-\eta^{\prime}$ mixing. Those ratios are also given in Table IX and Fig. 10 compares the theoretical predictions with our experimental mea32 surements. The measured ratios are smaller than the predictions and are compatible at the level of less than

TABLE VIII. Comparison of the measured branching fraction $\mathcal{B}$, with the predictions by factorization [3, 15, 48, 49] and pQCD [17, 18]. The first quoted uncertainty is statistical and the second is systematic.

|  |  |  |  |
| :--- | :---: | :---: | :---: |
| $\mathcal{B}\left(\bar{B}^{0} \rightarrow\right)\left(\times 10^{-4}\right)$ | This measurement | Factorization | pQCD |
|  |  |  |  |
| $D^{0} \pi^{0}$ | $2.69 \pm 0.09 \pm 0.13$ | $0.58[15] ; 0.70[3]$ | $2.3-2.6$ |
| $D^{* 0} \pi^{0}$ | $3.05 \pm 0.14 \pm 0.28$ | $0.65[15] ; 1.00[3]$ | $2.7-2.9$ |
| $D^{0} \eta$ | $2.53 \pm 0.09 \pm 0.11$ | $0.34[15] ; 0.50[3]$ | $2.4-3.2$ |
| $D^{* 0} \eta$ | $2.69 \pm 0.14 \pm 0.23$ | $0.60[3]$ | $2.8-3.8$ |
| $D^{0} \omega$ | $2.57 \pm 0.11 \pm 0.14$ | $0.66[15] ; 0.70[3]$ | $5.0-5.6$ |
| $D^{* 0} \omega$ | $4.55 \pm 0.24 \pm 0.39$ | $1.70[3]$ | $4.9-5.8$ |
| $D^{0} \eta^{\prime}$ | $1.48 \pm 0.13 \pm 0.07$ | $0.30-0.32[49] ; 1.70-3.30[48]$ | $1.7-2.6$ |
| $D^{* 0} \eta^{\prime}$ | $1.48 \pm 0.22 \pm 0.13$ | $0.41-0.47[48]$ | $2.0-3.2$ |

364 twO $\sigma$.
The SCET [19-21] does not predict the absolute value of the $\mathcal{B}$ but it predicts that the ratios $\mathcal{B}\left(\bar{B}^{0} \rightarrow{ }_{1380}\right.$ $\left.D^{* 0} h^{0}\right) / \mathcal{B}\left(\bar{B}^{0} \rightarrow D^{0} h^{0}\right)$ are about equal to one for ${ }_{1381}$ $h^{0}=\pi^{0}, \eta$ and $\eta^{\prime}$. For $h^{0}=\omega$ that prediction holds ${ }_{1382}$ only for the longitudinal component of $\bar{B}^{0} \rightarrow D^{* 0} \omega$, as ${ }_{1383}$ non trivial long-distance QCD interactions may increase ${ }_{1384}$ the transverse amplitude. We measure the fraction of ${ }_{1385}$ longitudinal polarization to be $f_{L}=(66.5 \pm 4.7$ (stat. $) \pm{ }_{1386}$ 1.5 (syst.)) $\%$ in the decay mode $\bar{B}^{0} \rightarrow D^{* 0} \omega$, and find ${ }_{1387}$ that the ratio $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{* 0} \omega\right) / \mathcal{B}\left(\bar{B}^{0} \rightarrow D^{0} \omega\right)$ is signifi- ${ }_{1388}$ cantly higher than one, as expected by SCET [21]. The ${ }_{1389}$ SCET gives also a prediction about the ratio $\mathcal{B}\left(\bar{B}^{0} \rightarrow{ }_{1390}\right.$ $\left.D^{(*) 0} \eta^{\prime}\right) / \mathcal{B}\left(\bar{B}^{0} \rightarrow D^{(*) 0} \eta\right) \simeq 0.67$, which is similar to the ${ }_{1391}$ prediction by factorization.

TABLE IX. Ratios of branching fractions $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{* 0} h^{0}\right) /{ }^{1}$ $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{0} h^{0}\right)$ and $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{(*) 0} \eta^{\prime}\right) / \mathcal{B}\left(\bar{B}^{0} \rightarrow D^{(*) 0} \eta\right)$. The first uncertainty is statistical, the second is systematic.

| $\mathcal{B}$ ratio | This measurement |
| :--- | :---: |
| $D^{* 0} \pi^{0} / D^{0} \pi^{0}$ | $1.14 \pm 0.07 \pm 0.08$ |
| $D^{* 0} \eta(\gamma \gamma) / D^{0} \eta(\gamma \gamma)$ | $1.09 \pm 0.09 \pm 0.08$ |
| $D^{* 0} \eta\left(\pi \pi \pi^{0}\right) / D^{0} \eta\left(\pi \pi \pi^{0}\right)$ | $0.87 \pm 0.12 \pm 0.05$ |
| $D^{* 0} \eta / D^{0} \eta($ Combined $)$ | $1.03 \pm 0.07 \pm 0.07$ |
| $D^{* 0} \omega / D^{0} \omega$ | $1.80 \pm 0.13 \pm 0.13$ |
| $D^{* 0} \eta^{\prime}(\pi \pi \eta) / D^{0} \eta^{\prime}(\pi \pi \eta)$ | $1.03 \pm 0.22 \pm 0.07$ |
| $D^{* 0} \eta^{\prime}\left(\rho^{0} \gamma\right) / D^{0} \eta^{\prime}\left(\rho^{0} \gamma\right)$ | $1.06 \pm 0.38 \pm 0.09$ |
| $D^{* 0} \eta^{\prime} / D^{0} \eta^{\prime}($ Combined $)$ | $1.04 \pm 0.19 \pm 0.07$ |
| $D^{0} \eta^{\prime} / D^{0} \eta$ | $0.54 \pm 0.07 \pm 0.01$ |
| $D^{* 0} \eta^{\prime} / D^{* 0} \eta$ | $0.61 \pm 0.14 \pm 0.02$ |

## VIII. CONCLUSIONS

We measure the branching fractions of the colorsuppressed decays $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$, where $h^{0}=\pi^{0}, \eta$, $\omega$, and $\eta^{\prime}$ with $454 \times 10^{6} B \bar{B}$ pairs. All the measurements are mostly in agreement with the previous results [8, 10$12,14]$ and are the most precise determinations of the $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}\right)$ from a single experiment. They represent significant improvements with respect to the accuracy of the existing PDG averages [25].

For the first time we also measure the fraction of longitudinal polarization $f_{L}$ in the decay mode $\bar{B}^{0} \rightarrow$ $D^{* 0} \omega$ to be significantly smaller than 1 , and equal to $(66.5 \pm 4.7$ (stat.) $\pm 1.5$ (syst.)) $\%$. This reinforces the conclusion drawn from the $\mathcal{B}$ measurements on the validity of factorisation in color-suppressed decays and supports expectations from SCET.

We confirm the significant differences from theoretical predictions by factorization and provide strong constraints on the models of color-suppressed decays. In particular our results support most of the predictions of SCET on $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}[19-21]$.

## IX. ACKNOWLEDGMENTS

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l'Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research
on Matter (The Netherlands), the Research Council of 1421 cil (United Kingdom). Individuals have received support Norway, the Ministry of Education and Science of the 1422 from the Marie-Curie IEF program (European Union), Russian Federation, Ministerio de Ciencia e Innovación ${ }_{1423}$ the A. P. Sloan Foundation (USA) and the Binational (Spain), and the Science and Technology Facilities Coun- ${ }_{1224}$ Science Foundation (USA-Israel).
[1] H-Y. Cheng, C-K. Chua, and A. Soni, Phys. Rev. D 71, 1480 014030 (2005).
[2] D. Du, Phys. Lett. B 406, 110 (1997).
[3] M. Neubert and B. Stech, in Heavy Flavours II, eds. 1883 A.J. Buras and M. Lindner (World Scientific, Singapore, 1484 1998), p. 294.
[4] M. Bauer, B. Stech and M. Wirbel, Z. Phys. C 34, 1031486 (1987).
[5] M. Neubert and A.A. Petrov, Phys. Lett. B 519, 501488 (2001).

1489
6] A. Deandrea, N. Di Bartolomeo, R. Gatto, and G. Nar- 1490 dulli, Phys. Lett. B 318, 549 (1993); A. Deandrea et al., 1491 ibid. 320, 170 (1994).
[7] K. Honscheid, K. R. Schubert, and R. Waldi, Z. Phys. C 63, 117 (1994).
[8] T. E. Coan et al. (CLEO Collaboration), Phys. Rev. Lett. 88, 062001 (2002).
[9] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 88, 052002 (2002).
[10] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 69, 032004 (2004).
[11] J. Schümann et al. (Belle Collaboration), Phys. Rev. D 72, 011103 (2005).
[12] S. Blyth et al. (Belle Collaboration), Phys. Rev. D 74, 092002 (2006).
[13] A. Kuzmin et al. (Belle Collaboration), Phys. Rev. D 76, 012006 (2007).
[14] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 78, 052005 (2008).
[15] C-K. Chua, W-S. Hou, and K-C. Yang, Phys. Rev. D 65, 096007 (2002).
[16] L.E. Leganger and J.O. Eeg, Phys. Rev. D 82, $074007{ }^{1995}$ (2010).
[17] Y.Y Keum, T. Kurimoto, H. Li, C.D Lü and A.I. Sanda, Phys. Rev. D 69, 094018 (2004).
[18] C.D Lü, Phys. Rev. D 68, 097502 (2003). 143
[19] C.W. Bauer, D. Pirjol and I.W. Stewart, Phys. Rev. D 65, 054022 (2002).
[20] S. Mantry, D. Pirjol, and I.W. Stewart, Phys. Rev. D $68{ }_{1500}$ 114009 (2003).
[21] A.E. Blechman, S. Mantry, and I.W. Stewart, Phys. Lett. ${ }^{1501}$ B 608, 77 (2005).
[22] C-K. Chua and W-S. Hou, Phys. Rev. D 77, $116001{ }^{1503}$ (2008). R. Fleischer, N. Serra, and N. Tuning, Phys. Rev. ${ }^{1504}$ D 83, 014017 (2011)
[23] M. Gronau, Phys. Lett. B 557, 198 (2003). M. Gronau, ${ }^{1506}$ Y. Grossman, N. Shuhmaher, A. Soffer, and J. Zupan, ${ }^{1507}$ Phys. Rev. D 69113003 (2004). R. Fleischer, Phys. Lett. ${ }^{1508}$ B 562, 234 (2003) and Nucl. Phys. B 659, 321 (2003). ${ }^{1509}$ B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. ${ }^{1510}$ 99, 081801 (2007).
[24] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. ${ }^{1512}$ Methods Phys. Res., Sect. A 479, 1 (2002).
[25] K. Nakamura et al.(Particle Data Group), J. Phys. G 37, 075021 (2010).
[26] D. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[27] T. Sjöstrand, S. Mrenna and P. Skands, Comput. Phys. Commun. 178, 852 (2008).
[28] T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994).
[29] S. Agostinelli et al. (Geant4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[30] The so called empirically modified Novosibirsk function divides the fitting region into a peaking region, a low tail region and a high tail region. For a variable $x$, the modified Novosibirsk function $f(x)=A_{p} \times \exp (g(x))$, where $g(x)$ is defined, in the peak region $x_{1}<x<x_{2}$, as

$$
-\ln 2 \times\left(\frac{\ln \left(1+2 \tau \sqrt{\tau^{2}+1} \frac{x-x_{p}}{\sigma_{p} \sqrt{2 \ln 2}}\right)}{\ln \left(1+2 \tau^{2}-2 \tau \sqrt{\tau^{2}+1}\right)}\right)^{2}
$$

in the low tail region $x<x_{1}$, as
$\frac{\tau \sqrt{\tau^{2}+1}\left(x-x_{1}\right) \sqrt{2 \ln 2}}{\sigma_{p}\left(\sqrt{\tau^{2}+1}-\tau\right)^{2} \ln \left(\sqrt{\tau^{2}+1}+\tau\right)}+\rho_{1}\left(\frac{x-x_{1}}{x_{p}-x_{1}}\right)^{2}-\ln 2$,
and in the high tail region $x>x_{2}$, as
$-\frac{\tau \sqrt{\tau^{2}+1}\left(x-x_{2}\right) \sqrt{2 \ln 2}}{\sigma_{p}\left(\sqrt{\tau^{2}+1}+\tau\right)^{2} \ln \left(\sqrt{\tau^{2}+1}+\tau\right)}+\rho_{2}\left(\frac{x-x_{2}}{x_{p}-x_{2}}\right)^{2}-\ln 2$.
The parameters are:

- $A_{p}$ is the value at the maximum of the function,
- $x_{p}$ is the peak position,
- $\sigma_{p}$ is the width of the peak defined as the width at half-height divided by $2 \sqrt{2 \ln 2} \simeq 2.35$,
- $\xi$ is an asymmetry parameter.

The positions $x_{1,2}$ are $x_{p}+\sigma_{p} \sqrt{2 \ln 2}\left(\frac{\xi}{\sqrt{\xi^{2}+1}} \mp 1\right)$.
[31] J.C. Anjos et al. (E691 Collaboration), Phys. Rev. D 48, 56 (1993).
[32] A. Höcker et al. (TMVA Group), CERN Report No. CERN-OPEN-2007-007 (2007).
[33] S.M. Berman and M. Jacob, Phys. Rev. Lett. 139, 1023 (1965).
[34] L. Lyons, D. Gibaut, and P. Clifford, Nucl. Instrum. Methods Phys. Res., Sect. A 270110 (1988). B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 78, 112003 (2008).
[35] S.E. Csorna et al. (CLEO Collaboration), Phys. Rev. D 67, 112002 (2003).
[36] A.R. Williamson, Proccedings of the conference FPCP06, hep-ph/0605196 (2006).
[37] J.G. Koerner and G.R. Goldstein, Phys. Lett. B 89, 105 (1979).
[38] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 1533 92, 141801 (2004).

1534 (2005). Y.D. Yang, R. Wang and G.R. Lu, Phys. Rev. 1536 D 72, 015009 (2005). C.S. Huang, P. Ko, X.H. Wu, and 1537 Y.D. Yang, Phys. Rev. D 73, 034026 (2006). B. Aubert 1538 et al. (BABAR Collaboration), Phys. Rev. D 78, 0920081539 [45] (2008).

1540
[40] H.Y. Cheng, C.K. Chua, and A. Soni, Phys. Rev. D 71, 1541 014030 (2005).

1542
[41] M. Beneke, J. Rohrer, and D. Yang, Phys. Rev. Lett. 96, 1543 141801 (2006)

1544
[42] G. Kramer and W.F. Palmer, Phys. Rev. D 45, 1932161545 (1992). 1546
[43] J.L. Rosner, Phys. Rev. D 42, 3732 (1990). M. Neubert, 1547 Phys. Lett. B 264, 455 (1991). G. Kramer, T. Man- 1548
nel and W.F. Palmer, Z. Phys. C 55, 497 (1992). J.D. Richman, Heavy Quark and CP Violation, in Probing the Standard Model of Particle Interactions, Les Houches Session LXVIII, 1997 (Elsevier, Amsterdam, 1999), eds. R. Gupta, A. Morel, E. De Rafael, and F. David.
[44] J.L. Rosner, Phys. Rev. D 60, 074028 (1999).
[45] M. Beneke, G. Buchalla, M. Neubert, and C.T. Sachrajda, Nucl. Phys. B 591, 313 (2000).
[46] H-Y. Cheng and K-C Yang, Phys. Rev. D 59, 092004 (1999).
[47] J. Charles et al. (CKMfitter group), Eur. Phys. Jour. C 41, 1-131 (2005).
[48] A. Deandrea and A.D. Polosa, Eur. Phys. Jour. 22, 677 (2002).
[49] J.O. Eeg, A. Hiorth, and A.D. Polosa, Phys. Rev. D 65, 054030 (2002).

