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Abstract

The Higgs boson mass used to be the only unknown input parameter of
the electroweak contributions to (g− 2)µ in the Standard Model. It enters
at the two-loop level in diagrams with e.g. top loops, W- or Z-exchange.
We re-evaluate these contributions, providing analytic expressions and ex-
act numerical results for the Higgs boson mass recently measured at the
LHC. Our final result for the full Standard Model electroweak contribu-
tions is (153.6±1.0)×10−11, where the remaining theory error comes from
unknown three-loop contributions and hadronic uncertainties.

The anomalous magnetic moment aµ = (g − 2)µ/2 of the muon has been
measured very precisely at Brookhaven National Laboratory, with the final
value [1]1:

aexpµ = (116 592 089 ± 63) × 10−11 . (1)

This measurement has already reached a sensitivity to details of the weak in-
teractions, which contribute at the order 10−9. Future experiments planned at
Fermilab [2] and J-PARC [3] aim to further reduce the uncertainty by a factor 4.

The Standard Model theory prediction has also been continuously improv-
ing, see Refs. [4, 5] for recent reviews and references. The 5-loop QED con-
tribution has been completely calculated [6]. The hadronic vacuum polar-
ization contributions make use of the most recent experimental data on the
(e+e− → hadrons) cross section [7–9], and an earlier discrepancy to analy-
ses based on τ -decays has been resolved [9, 10]. The latest results of various
groups for the hadronic light-by-light contributions agree within the quoted
errors [4, 11], and new non-perturbative approaches promise further progress
[12,13].

1 The change in the number compared to Ref. [1] is due to a new PDG value for the
magnetic moment ratio of the muon to proton, see e.g. Ref. [2]
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Here we focus on the electroweak contributions to (g − 2)µ in the Standard
Model. They include contributions from the Higgs boson and are the only ones
which depend on the Higgs boson mass MH . This quantity used to be the only
unknown input parameter of the Standard Model, resulting in the dominant
remaining theory uncertainty of the electroweak contributions. As a reference,
the seminal evaluation of Ref. [14] obtained the result

aEWµ = (154 ± 1± 2)× 10−11, (2)

where the first error is due to hadronic uncertainties, but the second is due to
the unknown Higgs boson mass.

Now, the Higgs boson mass has been measured at the LHC to be MH =
125.5±0.2(stat.)+0.5

−0.6(syst.) GeV by ATLAS [15] and MH = 125.7±0.3(stat.)±
0.3(syst.) GeV by CMS [16]. In the following we take the average central value
and a conservative error band, covering the 2σ range of both measurements:

MH = 125.6 ± 1.5 GeV. (3)

Given this progress on all fronts regarding (g − 2)µ and the Higgs boson
it is appropriate to update the prediction of the electroweak contributions to
(g − 2)µ.

In the present paper we therefore re-evaluate the electroweak Standard
Model contributions at the two-loop level, making use of the LHC result. We
provide the full MH -dependent part in numerical and, where not readily avail-
able, in analytical form. This allows us to obtain the exact (g − 2)µ prediction
for the measured value of MH , and to compare with previously published results
and error estimates. We combine this with the most advanced computations of
all other electroweak contributions up to leading 3-loop order and provide the
final result and a complete discussion of the remaining theory error.

In the following our input parameters besides Eq. (3) are [17]:

MW = 80.385 ± 0.015 GeV, mµ = 105.6583715 ± 0.0000035 MeV, (4a)

MZ = 91.1876 ± 0.0021 GeV, mt = 173.5 ± 0.6 ± 0.8 GeV (4b)

for the masses of W-boson, muon, Z-boson and top quark, and

GF = (1.166 378 7 ± 0.000 000 6) × 10−5 GeV−2, α = 1/137.035 999 (5)

for the muon decay constant and the fine-structure constant.

The Standard Model electroweak contributions are split up into one-loop,
two-loop and higher orders as

aEWµ = aEW(1)
µ + a

EW(2)
µ;bos + a

EW(2)
µ;ferm + aEW(≥3)

µ , (6)

where the two-loop contributions are further split into bosonic and fermionic
contributions, as discussed below.

The one-loop contribution is given by [4, 5]

aEW(1)
µ =

GF√
2

m2
µ

8π2

[

5

3
+

1

3
(1− 4s2W )2

]

= (194.81 ± 0.01) × 10−11, (7)
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Figure 1: Sample two-loop diagrams: Higgs-dependent bosonic (a) and
fermionic (b) diagram, diagram with γγZ-fermion triangle (c) and γ–Z mixing
(d).

where s2W = 1 − M2
W /M2

Z is the square of the weak mixing angle in the on-
shell renormalization scheme. One-loop contributions suppressed by m2

µ/M
2
Z or

m2
µ/M

2
H are smaller than 10−13 and hence neglected here. The parametrization

in terms of GF already absorbs important higher-order contributions. The error
in Eq. (7) is due to the uncertainty of the input parameters, in particular of
the W-boson mass.

Before discussing higher-order contributions we briefly explain possible
parametrizations in terms of GF and α. The one-loop contribution in Eq. (7)
has been parametrized in terms of GF . Generally, n-loop contributions are
proportional to GF α(n−1), and it is possible to reparametrize α in terms of
other quantities. Possibilities are to replace α by a running α at the scale
of the muon mass or the Z-boson mass, or to replace α → α(GF ), where
α(GF ) ≡

√
2GF s

2
WM2

W /π = α× (1+∆r). The quantity ∆r summarizes radia-
tive corrections to muon decay. Different choices amount to differences which
are formally of the order n+1. We will always choose α in the Thomson limit,
i.e. given by Eq. (5).

We now turn to the first set of contributions with noticeable dependence

on the Higgs boson mass: the bosonic two-loop contributions a
EW(2)
µ;bos . They

are defined by two-loop and associated counterterm diagrams without a closed
fermion loop, see Fig. 1(a) for a sample diagram. They are conceptually
straightforward but involve many diagrams. Their first full computation in
Ref. [18] was a milestone — the first full computation of a Standard Model
observable at the two-loop level. Actually, Ref. [18] employed an approxima-
tion assuming MH ≫ MW . Ref. [19] confirmed the result but provided the full
MH -dependence; Ref. [20] then published the result in semianalytical form.

Here we re-evaluate the bosonic two-loop contributions using the
parametrization discussed above, in terms of GF α. Fig. 2 shows the result
for a range of Higgs boson masses. The numerical result differs by around 3%
from the one given in Ref. [19], where the GF α(GF ) parametrization was cho-
sen. The measured value of MH now fixes the value of these contributions and
we obtain

a
EW(2)
µ;bos = (−19.98 ± 0.03) × 10−11. (8)

Here the remaining parametric uncertainty results from the experimental un-
certainties of the input parameters MH , and to a smaller extent of MW , see
the right plot in Fig. 2. The result lies within the intervals given in the original
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Figure 2: Numerical result for a
EW(2)
µ;bos as a function of the Higgs boson mass.

The vertical band indicates the measured value of MH . The dashed line in
the left plot corresponds to the leading logarithmic approximation as defined
in Ref. [19]. In the right plot the dotted, solid, dashed lines correspond to a
variation of MW by (−15, 0,+15) MeV, respectively.

Refs. [19,20] and the recent reviews [4,5], which all differ slightly because of the
different Higgs boson mass ranges and central values used for the evaluations.

The fermionic two-loop contributions a
EW(2)
µ;ferm are defined by Feynman dia-

grams with a closed fermion loop. The Higgs boson enters through diagrams
of the type of Fig. 1(b), where a fermion loop generates a Hγγ or HγZ inter-
action. The fermionic contributions involve also light quark loops, e.g. in the
diagrams of Fig. 1(c), for which perturbation theory is questionable. Hence we
split up these contributions further, slightly extending the notation of Ref. [5]:

a
EW(2)
µ;ferm = aEW(2)

µ (e, µ, u, c, d, s) + aEW(2)
µ (τ, t, b) + a

EW(2)
µ;f-rest,H + a

EW(2)
µ;f-rest,no H . (9)

Here the first two terms on the r.h.s. denote contributions from the diagrams
of Fig. 1(c) with a γγZ-subdiagram and the indicated fermions in the loop.
The third term denotes the Higgs-dependent diagrams of Fig. 1(b); the fourth
collects all remaining fermionic contributions, e.g. from W-boson exchange or
from diagram Fig. 1(d).

We first focus on the Higgs-dependent part, for which we write

a
EW(2)
µ;f-rest,H =

∑

f

[

a
EW(2)
µ;f-rest,Hγ(f) + a

EW(2)
µ;f-rest,HZ(f)

]

, (10)

where the two terms in the sum denote the Higgs-dependent diagrams of
Fig. 1(b) with either a photon or a Z-boson in the outer loop and the sum
extends over the Standard Model fermions; the relevant ones are f = t, b, c, τ .
Contributions from the remaining Standard Model fermions are below 10−14

and thus negligible.
The first full computation of the fermionic contributions, including the Higgs

dependence was carried out in Ref. [21]. There, the dependence on the Higgs bo-
son mass is provided in three limiting cases, MH ≪ mt, MH = mt, MH ≫ mt.
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Furthermore, since s2W ≈ 1/4, terms suppressed by a factor (1− 4s2W ), in partic-
ular the entire Higgs–Z diagrams of Fig. 1(b) were neglected. Diagrams similar
to Fig. 1(b) have also been evaluated in the more complicated case of extended
models, e.g. in the Two-Higgs-doublet model and the supersymmetric Standard
Model [22,23].

We computed the Higgs-dependent diagrams without approximations in two
ways: with the technique developed for Ref. [19,24] using asymptotic expansion
and integral reduction techniques, and with the method of Barr and Zee, where
the inner loop is computed first and then inserted into the outer loop [25]. The
result from this is

a
EW(2)
µ;f-rest,Hγ(f) =

GF√
2

m2
µ

8π2

α

π
NC Q2

f 2 fHγ(xfH), (11)

a
EW(2)
µ;f-rest,HZ(f) =

GF√
2

m2
µ

8π2

α

π
NC Qf

I3f − 2s2WQf

4c2W s2W
(1− 4s2W ) fHZ(xfH , xfZ), (12)

with xfH = m2
f/M

2
H and xfZ = m2

f/M
2
Z . The loop functions can be written in

terms of one-dimensional integral representations or in terms of dilogarithms:

fHγ(x) =

∫ 1

0
dw x

2w2 − 2w + 1

w2 − w + x
log

w(1 −w)

x
(13)

=x [fH(x)− 4] , (14)

fHZ(x, z) =

∫ 1

0
dw x z

2w2 − 2w + 1

w2 − w + z

[

log w(1−w)
x

w2 − w + x
+

log x
z

x− z

]

(15)

=
x z

x− z
[fH(z)− fH(x)] . (16)

The dilogarithms are contained in the function fH(x), defined as2

fH(x) =
4x− 2

y

[

Li2

(

1−
1− y

2x

)

− Li2

(

1−
1 + y

2x

)]

− 2 log x, (17)

with y =
√
1− 4x. Further, the weak isospin I3f is defined as ±1

2 for up (down)

fermions, and the electric charge Qf equals +2
3 ,−

1
3 ,−1 for up-type quarks,

down-type quarks and charged leptons, respectively. The color factor NC is 1
for leptons and 3 for quarks.

Fig. 3(a) shows the numerical result as a function of the Higgs boson mass
and compares with the numerical values obtained in Ref. [21], using their ap-
proximations. We find that the approximation for large MH is surprisingly
poor. As a check of this case, we have explicitly computed the higher orders in
the expansion in m2

t/M
2
H and verified that the terms neglected in Ref. [21] are

important.
Inserting the measured value of the Higgs boson mass, and taking into ac-

count all contributions including top, bottom, charm and τ loops and diagrams

2 In Ref. [26], Eq.(70), a similar function fS(x) is defined, where fS(x) = xfH(x)− 4x.
Additionally, Eqs. (14), (16) are connected by fHγ(x) = limz→∞ fHZ(x, z).
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Figure 3: Numerical result for a
EW(2)
µ;f-rest,H as a function of the Higgs boson mass.

The vertical band indicates the measured value of MH . The fat dots in the left
plot correspond to the approximations for MH = 60 GeV,mt, 300 GeV given
in Ref. [21]. In the right plot the dotted, solid, dashed lines correspond to a
variation of mt by (−1.4, 0,+1.4) GeV, respectively.

with Higgs and Z-boson exchange, we obtain

a
EW(2)
µ;f-rest,H = (−1.50 ± 0.01) × 10−11, (18)

where the indicated error arises essentially from the uncertainty of the input
parameters mt and MH . Again, the result is in agreement with the intervals
given in Refs. [4,5,21], which differ because of the different allowed Higgs boson
mass ranges.

Eqs. (8), (11)–(18) and Figs. 2 and 3 constitute our main new results. In
the following we briefly review the remaining electroweak contributions, with
slight updates.

The non-Higgs dependent contributions a
EW(2)
µ;f-rest,no H are given by:

a
EW(2)
µ;f-rest,no H =−

GF√
2

m2
µ

8π2

α

π

[

1

2s2W

(

5

8

m2
t

M2
W

+ log
m2

t

M2
W

+
7

3

)]

−
GF√
2

m2
µ

8π2

α

π

[

c2W
2s2W

m2
t

M2
W

(

1− 4s2W
)

]

−
GF√
2

m2
µ

8π2

α

π

[(

8

9
log

MZ

mµ
+

4

9
log

MZ

mτ

)

(

1− 4s2W
)2

+
4

3
× 6.88

(

1− 4s2W
)

]

.

(19)

The first line has been computed in Ref. [21] and was re-written in this form
e.g. in Ref. [4, 27]; the other two terms correspond to additional terms added
in Ref. [14], where however no explicit formula was provided. These terms are
suppressed by (1−4s2W ) but enhanced by either m2

t /M
2
W or by large logarithms.

The factor m2
t /M

2
W enters via the quantity ∆ρ, which arises by applying the

renormalization s2W → s2W + δs2W in the (1 − 4s2W )2-term of the one-loop re-
sult (7). The other term originates from diagrams with γ–Z mixing as shown

6
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Figure 4: Numerical result for a
EW(2)
µ (τ, t, b) as a function of the bottom quark

mass, for various values of the top quark mass. The dash-dotted line corre-
sponds to the MS mass mt = 160 GeV; the solid, dotted, dashed lines to the
pole mass mt = 173.5 GeV and variations thereof by ∓1.4 GeV. The vertical
blue lines indicate the values of MS mass mb(mb) = 4.18 GeV and the 1S-mass
4.65 GeV [17]; the MS mass at higher scales has smaller values. The horizontal
gray band corresponds to the result (21).

in Fig. 1(d) with light fermions running in the loop. It can be computed us-
ing renormalization-group techniques [14,28]. The number 6.88 in the last line
has been obtained in Ref. [14] as a nonperturbative replacement of the pertur-
bative expression 2/3

∑

q=u,d,s,c,bNc

(

I3qQq − 2Q2
qs

2
W

)

logMZ/mq. Numerically,

we obtain −4.12,−0.24,−0.29 in units of 10−11 for the three contributions, in
total

a
EW(2)
µ;f-rest,no H = (−4.65 ± 0.10) × 10−11. (20)

The error due to the uncertainty of the input parameters is negligible; the given
error is our estimate of the still neglected terms which are suppressed by a factor
(1− 4s2W ) or M2

Z/m
2
t and not enhanced by anything. The estimate is obtained

by comparison with the computed terms in the second and third line of Eq.
(19) and the respective enhancement factors.

For the third generation contributions to Fig. 1(c) perturbation theory can
be applied, and these contributions have been evaluated in Refs. [14, 21, 29].
The result and the error estimate from Ref. [14], including subleading terms in
m2

t/M
2
Z , read

aEW(2)
µ (τ, t, b) = −(8.21 ± 0.10) × 10−11. (21)

We have re-evaluated these contributions for various definitions of quark masses
which differ by higher orders in the strong interaction, similarly to the error
estimation by Ref. [14]. The result is shown in Fig. 4, and it confirms that Eq.
(21) is still compatible with present values of quark masses.

The contribution of the first two generations to Fig. 1(c) has first been fully
computed in Ref. [21], approximating the light quark contributions by a naive

7



perturbative calculation with constituent-like quark masses. The light quark
contributions have been treated in a more satisfactory way in Refs. [14,29,30].
The final result of Ref. [14] is3

aEW(2)
µ (e, µ, u, c, d, s) = −(6.91 ± 0.20 ± 0.30) × 10−11, (22)

where the uncertainties for the 1st and 2nd generation have been given sepa-
rately.

Contributions from beyond the two-loop level have been considered in
Refs. [14, 28]. There, the leading logarithms at the three-loop level have been
obtained from renormalization-group methods. It was found that these loga-
rithms amount to 0.4×10−11 , if the two-loop result is parametrized in terms of
GF α(mµ), where α(mµ) is the running fine-structure constant at the scale of
the muon mass. If the two-loop result is parametrized in terms of GF α, how-
ever, the shift of the coupling accidentally cancels the three-loop logarithms.
Hence, since this is the parametrization we have used, we take

aEW(≥3)
µ = (0± 0.20) × 10−11, (23)

where the error estimate is from Ref. [14]. It corresponds to estimating the
non-leading logarithmic three-loop contributions to be below a percent of the
two-loop contributions.

In summary, we have re-evaluated the electroweak contributions to aµ
using the measured Higgs boson mass and employing consistently the GF α
parametrization at the two-loop level. We provide exact numerical results for
the full bosonic and the Higgs-dependent fermionic two-loop contributions, for
the latter also analytical results. These results are supplemented by updates
of the most advanced available results on all other electroweak contributions.
Our final result obtained from Eqs. (7), (8), (18), (20), (21), (22), (23) reads

aEWµ = (153.6 ± 1.0) × 10−11. (24)

We assess the final theory error of these contributions to be±1.0×10−11. This is
the same value as the one given in Ref. [14] for the overall hadronic uncertainty
from the diagrams of Fig. 1(c), which is now by far the dominant source of
error of the electroweak contributions. The error from unknown three-loop
contributions and neglected two-loop terms suppressed byM2

Z/m
2
t and (1−4s2W )

is significantly smaller and the error due to the experimental uncertainty of
the Higgs boson, W-boson, and top-quark mass is well below 10−12 and thus
negligible.

Our result can be compared with the QED contributions. In units of 10−12,
our result shifts the electroweak contributions by +4 (compared to Ref. [4]),
+6 (to Ref. [5]), and −4 (to Ref. [14]). In contrast, the recent 5-loop calcula-
tion [6] has shifted the QED result by +8. Combining these new results with

3The result is taken from the erratum of Ref. [14]. It is perfectly compatible with the one
provided in Ref. [4]. The result quoted in Ref. [5] was taken from the original Ref. [14]; it
differs slightly but is also compatible within the errors.
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the two recent evaluations of the hadronic contributions [7, 8], we obtain the
following differences between the measurement Eq. (1) and the full Standard
Model prediction:

aexpµ − aSMµ =

{

(286 ± 80)× 10−11 [7],

(261 ± 80)× 10−11 [8].
(25)

The Standard Model theory error remains dominated by the non-
electroweak hadronic contributions. The QED and electroweak contributions
can now be regarded as sufficiently accurate for the precision of next generation
experiments.
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